bio-strategy delivering technology delivering technology

Whatman filtration

Product guide

What's new?

We are now Cytiva! We have a new name, a new energy, the same great Whatman[™] products and support that you know and trust. Cytiva is a global provider of technologies and services that advance and accelerate the development and manufacture of therapeutics that transform human health.

New products

- Whatman Puradisc[™] H-PTFE Syringe filters: 0.2 and 0.45 µm pore size, 13 and 25 mm diameters
- Whatman Uniflo[™] H-PTFE Syringe filters: 0.2 and 0.45 µm pore size, 13 and 25 mm diameters
- Whatman 850-DS Channel Filter plate with expanded range of membranes
- FFHP Plus Thick Nitrocellulose filters new grades
- Benchkote[™] surface protectors for ÄKTA[™] systems
- Whatman pre-folded filter papers in new grades and formats: pleated, pyramid and flat quadrant
- Grade 597 Optima cellulose filter papers, a standard grade for a wide variety of routine applications
- Whatman QM-C, pre-ignited silica microfiber filter without any additives or binder

Introducing

Cytiva Diagnostic Services: custom services to accelerate the development of early-stage lateral flow and flow-through immunoassays. See page 255.

Welcome to Whatman filtration by Cytiva

In laboratories across the globe, the Whatman name is synonymous with quality, reliability, and ease of use. Our instinct for simplification helps customers reduce costs, save time, and accelerate the rate of discovery. Our products have a reputation for working right the first time—every time, which is why they are specified for the most exacting applications across a wide range of industries around the globe.

We are where you are

We can meet the filtration and separations needs of virtually any laboratory with the right Whatman product at the right time. Through partnerships with the world's leading laboratory supply distribution companies, we ensure speedy delivery of products to your lab.

How to buy

- 1. Shop online at cytiva.com/shop/whatman-laboratory-filtration.
- 2. Call us now to speak with a customer service representative.
- 3. eMail your customer service team.
- 4. Find a distributor: details of your nearest distributor can be found at **cytiva.com/support/find-a-distributor**.

For details of your local customer support team please visit the link below and select your country or region: cytiva.com/contact

Whatman filtration works for you

Basic analytical testing

In the vast and disparate world of analytical chemistry, Whatman products are used for basic laboratory processes that range from simple clarification to solvent extraction. Products range from filter papers, thimbles and Benchkote benchtop protectors, to membrane filters and phase separator papers.

Food and beverage

Our filter papers are used to prepare food samples prior to a wide range of analyses. Our syringe filters prevent fatty or particulate laden samples from damaging valuable equipment. Our membranes are used to test for harmful bacteria.

Pharmaceutical

Whatman products enable pharmaceutical companies to increase productivity. Mini-UniPrep[™] syringeless filters and vials reduce high-performance liquid chromatography (HPLC) sample preparation time and consumables usage, and track-etched and Anopore[™] membranes are also vital to extruding liposomes for encasing and targeting drugs.

Environmental monitoring

Whatman products are cited in U.S. Environmental Protection Agency (EPA) and American Society for Testing and Materials (ATSM) and ISO protocols for environmental monitoring. Whether it is detecting suspended solids in water, measuring air for dangerous particulates, or supporting asbestos analysis to maintain healthy spaces there is a Whatman filter that is central to the test.

Diagnostic testing

Whatman products are designed into a wide range of registered diagnostic products, from application such as cancer detection, though to infectious diseases and even pregnancy tests. Our products include cellulose fiber, glass fiber and membrane products for use in rapid tests.

Industrial

Whatman products can be found in analytical testing laboratories across many industries. Whatman filters and equipment can stand up to the rigors of petrochemical, mining and cement testing, and deliver the precision required for testing microelectronics.

Three ways to use this guide

Choose from the three paths below to find the Whatman product that meets your specific requirements. In addition to product information, we have included general quick reference material in an appendix for your convenience.

Industry application

Our application finder on the following pages allows you to easily locate Whatman products by industry or application (p. 6).

Product type

If you know the type of product you're looking for, such as filter papers or membranes, you can find it quickly using the table of contents (p. 8).

Product/catalog number

Look up Whatman products by name or catalog number through the indices at the back of this catalog (p. 273).

Application finder

Basic lab

Education, commercial labs

Basic laboratory filtration for educational purposes, quality control, analysis, and R&D

Filter papers	10
Membrane filters	64
Filtration devices	129
Thimbles	209
Specialty products	
Benchkote	214
pH papers	219
Hardware and filter holders	96

Diagnostics Point-of-care immunoassays

Membrane selection for lateral flow237
Lateral flow immunoassays 229
Sample pads
Blood separators
Conjugate release pads
Membranes236
Absorbent pads
Flow-through immunoassays
Nitrocellulose membranes
Absorbents
Dipstick colorimetric assays
Sample collection cards
Track-etched membranes for
diagnostic applications

Environmental monitoring

Air

Analysis of air for biological and particulate contaminants

Aerosols

Membrane filters65

Microorganisms	
Nylon membranes	.93
PTFE membranes	89
Cyclopore track-etched membranes	.67

Glass microfiber filters

ME (mce) membranes	198
MicroPlus membranes	198
Cellulose acetate	79
Cellulosic membranes	78
PTFE membranes	

Non-medical venting

PTFE membranes

Particulate detection—asbestos, flue/gas stacks

Glass microfiber filters	48
QM-A (quartz)	58
QM-C	58
Cyclopore track-etched membranes	67
GF10 filter tape	55
HGF61 filter tape	56
PTFE membranes	89
PM 2.5 air monitoring membrane	91
MembraClear	86

Water

Analysis of drinking and waste water for biological and particulate contaminants

Bacterial detection

Cyclopore track-etched membranes67
Black Cyclopore track-etched membranes
Nuclepore track-etched membranes71
ME (mce) membranes 198
Membrane filtration accessories
MBS I 201
Manifolds 100
Glass filter funnels 100
Ground water

Particulates/suspended solids

Glass microfiber filters	48
934-AH	50
Cellulosic membranes	78
Cellulose nitrate membranes	81
934-AH RTU	60
GF/C RTU	60

Trace organics

Thimbles	

Others

.48

..89

Analysis of non-water/air (eg. fuel, soils, nuclear)

Airport explosives detection

Cellulose filters	
Equipment protection/venting	

Hazardous contaminants

Glass microfiber filters	
Thimbles	209
Quartz filters	

Nuclear radiation monitoring

Glass microfiber filters	
--------------------------	--

Particulates/suspended solids

Glass microfiber filters4	8
Cellulosic membranes7	8
Cellulose nitrate membranes	31

Soil analysis

Filter papers44	ł
Glass microfiber filters48	3
Cellulose nitrate membranes81	
Thimbles)

Turbine/diesel fuel

Cyclopore track-etched membranes67
Black Cyclopore track-etched membranes

Food and beverage

Operations

In process filtration in the production of food and beverage products

Clarification

.. 209

Glass microfiber filters	48
Cellulosic membranes	78
Capsule filters	178

Final filtration

Capsule filters 1	108
Polycap AS capsule filters	178

Liposome extrusion

Cyclopore track-etched membranes	
Anodisc inorganic membranes	

Solvents, acids, bases

PTFE membranes	89
Syringe filters	129
Capsule filters	178

Sterilizing filters

Syringe filters	.129
Capsule filters	.178

Sterilizing filtration of air and gases

Syringe filters	135
Capsule filters	178

QA/QC

Microbial and contaminant detection in food and beverage products

Analysis and detection of microorganisms

Black Cyclopore track-etched membranes	74
Manifolds1	00

6

MBS	201
ME membrane filters	198
Membrane filtration accessories	202

HPLC sample preparation

Filter vials	155
Syringe filters	129
MBS I	
Weighing papers	217

Physical properties testing

Filter papers	·	10
---------------	---	----

Wine filtration analysis

Filter papers 43	
Membrane filters65	
Chromatography paper	

Industrial

Chemical process industries

The analysis of chemicals,	polymers, and
petrochemicals	

Eiltor papara	1	r	
Filter papers	 1	ι	J

BioEthanol

Glass microfiber syrir	ge filters1	39
------------------------	-------------	----

Cement filtration

Quantitative standard papers	20
Quantitative ashless papers	20
Quantitative hardened ashless papers	

Mining filtration

Quantitative ashless papers	20
Binder-free glass microfiber filters	49
Glass and quartz thimbles	212

Microelectronics

Products in prod	cess and for analysis in
semiconductor	production

Nuclepore track-etched membranes	.71
Polydisc 50 mm disc filters1	172
Capsule filters	178

Pharmaceutical, biotechnology, medical research, specialty chemicals, life science research

Manufacturing operations

Full scale production of pharmaceuticals and other products

Analysis and detection

Prefiltration
Anodisc inorganic membranes76
Cyclopore track-etched membranes
Liposome extrusion
Membrane filtration accessories
Membrane filters65

Capsule filters

Sterilizing filters

Cyclopore track-etched membranes67	
Nuclepore track-etched membranes	

Product development

Scale up of new products from R&D to clinical trials

Prefiltration

Cellulose filters	10
Glass microfiber filters	48
Syringe filters	129
Capsule filters	178

R&D

The discovery of new pharmaceutical, therapeutic, and biotech products for human and animal uses

Analysis and detection

Filtration devices12	29
Basic lab	
Filter papers	10
Membrane filters	35
Platting	

Blotting

Cellulose filters	 i
ochalose meers	

HPLC sample preparation

Filter vials155	j
Syringe filters129, 151, 153	3

Mobile phase filtration

Inline filter devices	170
Nylon membrane	93
PTFE membrane	
Glass filter funnel assemblies	100

Prefiltration

.....178

Cellulose filters	12
Glass microfiber filters	48
Polycap HD capsule filters	30

Specialized procedures

Sterilizing filters

Membrane filters6	5
Syringe filters12	9
Capsule filters178	8

Pharmacogenomics

Chromatography products

Chromatography paper	
----------------------	--

Filter papers and membranes

Cellulose filters		12
-------------------	--	----

Glass microfiber filters4	8
Membrane filters6	5

Filtration devices

Filter vials	155
Syringe filters (including syringe	
filters for automation)	129, 147
Inline filters	170
Capsule filters	178
Venting filters	
Vacuum protection filters	

Microbiology products

Membrane filters65
Membrane filtration accessories

Sample collection

Cards	253
-------	-----

Specialty products

Extraction thimbles	209
Benchkote and Benchkote Plus	214
Weighing papers	217
Seed testing papers	46
pH indicators and test papers	219
Papers for healthcare	222
Phase separator paper	223
Lens cleaning tissue	224

Contents

01

Ce	ellulose filters 13
	Qualitative filter papers
	Quantitative filter papers 27
	Wet strengthened/general purpose filter papers27
	General purpose filter papers
	Folded and fluted filter papers
	Application specific filter papers43
	Seed germination testing papers46
GI	ass microfiber filters
<u> </u>	
	Binder-free glass microfiber (GMF) filter papers 49
0.	Binder-free glass microfiber (GMF) filter papers 49 TCLP glass fiber filter papers 49
	Binder-free glass microfiber (GMF) filter papers 49 TCLP glass fiber filter papers 49 Multigrade GMF filter papers
	Binder-free glass microfiber (GMF) filter papers 49 TCLP glass fiber filter papers 49 Multigrade GMF filter papers
	Binder-free glass microfiber (GMF) filter papers
	Binder-free glass microfiber (GMF) filter papers
	Binder-free glass microfiber (GMF) filter papers
	Binder-free glass microfiber (GMF) filter papers

Filter papers 10

2	Membrane filters 64
	Quick pick reference chart
	Capillary (true) pore membranes
	Cyclopore track-etched membranes
	Nuclepore track-etched membranes
	Black track-etched membranes74
	Anopore inorganic membranes
	Tortuous path (pore) membranes
	Regenerated cellulose membranes
	Cellulose acetate membranes
	Cellulose nitrate membranes 81
	Mixed cellulose ester membranes

03 Filtration hardware and accessories 96

Glass microfiber filter accessories
Glass vacuum filtration devices 100
Vacuum filtration equipment 104
Single vacuum filtration apparatus 104
Multiple vacuum filtration apparatus 106
Syringe type holders 108
Pressure filtration devices 112
Membrane prefilters and separators 114
Microbiology accessories 116
MBS I 117
Accessories and vacuum filtration apparatus 119

tration devices122

Syringe filter selection guide 124
Filter diameter and recommended volume 125
Device media characteristics and properties 126
Syringe filters 128
High performance syringe filters
Whatman Puradisc syringe filters
Whatman Anotop syringe filters136
Difficult to filter 139
Whatman GD/X syringe filters
Whatman GD/XP syringe filters143
Whatman Puradisc Plus145
Whatman Anotop Plus syringe filters145
Filters for automated systems 147
Whatman Roby 25 for robotic systems147
Whatman Roby 25 Filter Validation Kit148
Whatman DS-850 Channel Filter Plate149

Application Specific Syringe Filters15	0
Whatman Puradisc Aqua15	0
Whatman Anotop IC15	0
Whatman Anotop LC15	1
Whatman SPARTAN HPLC certified	
syringe filters15	3
Whatman Protein Prep syringe filter for	
ÄKTA systems15	4
All-in-one filters and filter vials	5
Whatman Mini-UniPrep integrated	
syringeless filters and filter vials15	5
Whatman Mini-UniPrep G2 integrated	
syringeless filters and glass vials16	0
Whatman UniPrep filter vials16	2
Whatman Autovial filter vials16	4
Advantage syringe filters	6
Whatman Uniflo syringe filters16	6
Mobile phase filtration17	0
Inline filter/degasser17	0
Discfilters	
Whatman Polydisc AS17	2
Whatman Polydisc TF and ReZist	3
Whatman Polydisc HD17	5
Whatman Polydisc GW17	6
Whatman Polydisc SPF17	7
Capsule filters	
Whatman Polycap AS17	8
Whatman Polycap HD18	0
Whatman Polycap SPF18	2
Whatman Polycap TC18	3
Whatman Polycap TF18	5
Whatman Polycap GW18	7
Whatman Carbon Cap18	8
Venting filters	9
Whatman PolyVENT integral vent filters18	9
HEPA-VENT and HEPA-CAP19	1
Vacuum protection filters 19	3
VACU-GUARD vacuum protection filters	3

05

Microbiology	products	196
morobiology	products	

Membrane filtration	198
Microbiology membranes	198
Polycarbonate membranes	200
MBS I microbiological filtration system	201
eButler membrane dispenser	201
Membrane filtration accessories	202
Pressure filtration devices	203
Vacuum filtration equipment	203

06	Specialty products
	Chromatography papers206
	Extraction thimbles 209
	Cellulose thimbles 209
	Glass and quartz thimbles212
	Benchkote and Benchkote Plus
	Benchkote protectors for lab-scale
	ÄKTA systems 216
	Weighing papers
	Paper for ignition strength (IS) measurement. 218
	pH indicators and test papers 219
	Papers for healthcare
	Phase separator paper 223
	Lens cleaning tissue 224
	Moisture testing papers 224

07 Diagnostic assay components...... 226

Point-of-care immunoassays 228
Lateral-flow immunoassays
Sample pads 230
Blood separators
Conjugate release pads234
Membranes
Membrane selection for lateral flow237
Membrane selector according to
sample type 239
Absorbent pads245
Lateral flow starter packs247
Flow-through immunoassays
Nitrocellulose membranes 248
Absorbent pads 248
Dipstick colorimetric assays
Track-etched membranes for
diagnostic applications 251
Whatman 903 Proteinsaver cards 253
Cytiva Diagnostic Services

08 Арр

pendices	25	,	7
----------	----	---	---

Appendix A: filtration simplified

Basic filtration concepts and terms257
Filter types and filter holders259
Glossary of terms262
Appendix B: product selection
Trace element composition cellulose
and glass microfiber filters 266
Chemical compatibility of membranes
and housings268
Media characteristics selection guide270
Syringe filter diameter guide271
Media selection for sample prep applications272
Appendix C: alphabetical and numeric indices
Index by catalog product number273

Alphabetical index.....

.. 282

Contents

01 Filter papers

Whatman filter papers are associated with quality, reliability, and customer service. We maintain high standards for reproducibility and uniformity by using only the highest quality raw materials and strict quality control measures.

Cellulose filters
Qualitative filter papers13
Quantitative filter papers20
Wet strengthened/general purpose filter papers
General purpose filter papers
Folded and fluted filter papers
Application specific filter papers43
Seed germination testing papers46
Glass microfiber filters
Binder-free glass microfiber (GMF) filter papers
Glass fiber filter papers for toxicity characteristic
leaching procedure (TCLP) glass fiber filter papers
Multigrade GMF filter papers53
Whatman acid-treated low metal TCLP filter papers
Glass microfiber filter papers with binder
Quartz microfiber filter papers58
Ready-to-use (RTU) GMF filter papers60

Cellulose filters

Whatman cellulose filters are manufactured from high-quality cotton linters which have been treated to achieve a minimum alpha cellulose content of 98%. These cellulose filter papers are used for general filtration and exhibit particle retention levels down to 2.5 µm. We offer a wide choice of retention/flow rate combinations to suit numerous laboratory applications.

The different groups of cellulose filters offer increasing degrees of purity, hardness, and chemical resistance.

Cellulose filters, trace element composition

Typical values (µg/g paper)

Grade	1	42	542	
Aluminum	3.6	2.5	3.4	
Antimony	< 0.5	< 0.5	< 0.5	
Arsenic	< 0.5	< 0.5	< 0.5	
Barium	< 0.5	< 0.5	< 0.5	······
Boron	< 1.0	< 1.0	< 1.0	
Calcium	27.5	8.3	14.7	
Chromium	1.0	1.5	1.1	
Copper	0.9	2.0	8.2	······
Iron	13.7	12.0	16.3	
Lead	< 0.5	< 0.5	< 0.5	
Magnesium	21.0	4.0	3.3	·····
Manganese	< 0.5	< 0.5	< 0.5	
Mercury	< 0.5	< 0.5	< 0.5	
Potassium	6.2	2.3	3.7	
Silicon	8.8	6.2	< 6.0	
Sodium	32.3	16.8	17.0	
Zinc	58.3	64.5	87.8	

Grade 5 qualitative filter papers

Control Perture manument Perture PAPERS Juniture CAT No. 1005.000 What Iman

Typical values for additional grades can be found in Appendix A.

Qualitative filter papers

These cellulose filters are used in qualitative analytical techniques to determine and identify materials. Fluted qualitative filters are available, which give improved flow rate and increased loading capacity compared to equivalent flat filters.

Grade 1 (11 µm*)

The most widely used filter paper for routine applications with medium retention and flow rate. This grade covers a wide range of laboratory applications and is frequently used for clarifying liquids. Traditionally, the grade is used in qualitative analytical separations for precipitates such as lead sulfate, calcium oxalate (hot), and calcium carbonate.

- In agriculture, it is used for soil analysis and seed testing procedures.
- In the food industry, Grade 1 is used for numerous routine techniques to separate solid foodstuffs from associated liquid, or extracting liquid and is widely used in education for teaching simple qualitative analytical separations.
- In air pollution monitoring, using circles or rolls, atmospheric dust is collected from airflow and the stain intensity measured photometrically.
- For gas detection, the paper is impregnated with a chromogenic reagent and color formation is quantified by optical reflectance.

Available fluted as Grade 1V.

Grade 2 (8 µm*)

Slightly more retentive and absorbent than Grade 1, with a corresponding increase in filtration time (i.e. slightly slower filtration speed). In addition to general filtration in the 8 μ m particle size range, the extra absorbency is utilized, for example, to hold soil nutrient in plant growth trials. Also used for monitoring specific contaminants in the atmosphere and in soil testing.

Available fluted as Grade 2V.

Grade 3 (6 µm*)

Double the thickness of Grade 1 with still finer particle retention and excellent loading capacity; more precipitate can be held without clogging.

- The extra thickness gives increased wet strength and makes this grade highly suitable for use in Büchner funnels.
- The high absorbency is particularly valuable when the paper is used as a sample carrier.

Grade 4 (25 µm*)

Extremely fast filtering with excellent retention of coarse particles and gelatinous precipitates such as ferric hydroxide and aluminum hydroxide.

- Very useful as a rapid filter for routine clean-up of biological fluids or organic extracts during analysis.
- Used when high flow rates in air pollution monitoring are required and the collection of fine particles is not critical. Available fluted as Grade 4V.

Grade 4 qualitative filter papers

Filter papers – Cellulose filters

Grade 5 (2.5 µm*)

The maximum degree of fine particle filtration in the qualitative range. Capable of retaining the fine precipitates encountered in chemical analysis. Slow flow rate.

• Excellent clarifying filter for cloudy suspensions and for water and soil analysis.

Also available fluted as Grade 5V.

Grade 6 (3 µm*)

Twice as fast as Grade 5 with similar fine particle retention. Often specified for boiler water analysis applications.

Grade 591 (7–12 µm*)

A thick filter paper with very high loading capacity for fast filtration of medium to coarse precipitates. Offers high absorbency and increased wet strength.

Also available fluted as Grade 591 ½.

Grade 595 (4–7 µm*)

Very popular, thin filter paper, medium-fast with medium to fine particle retention. Used for many routine analytical applications in different industries (e.g. particle separation from food extracts or filtration of solids from digested environmental samples for ICP/AAS analysis).

Also available fluted as Grade 595 $\frac{1}{2}$.

Grade 597 Optima (4–7 µm)

A standard Whatman grade filter paper for a variety of routine applications in food and beverage industries.

• Well-suited for determination of fat content in food or removal of carbon dioxide and turbidity from beverages such as beer.

Available in sheets and circles.

Grade 597 (4-7 µm*)

A medium fast filter paper with medium to fine particle retention.

• Used for a wide variety of routine analytical applications in different industries like food testing (e.g. determination of fat content) or removal of carbon dioxide and turbidity from beverages (as in beer analysis).

Available fluted as Grade 597 $\frac{1}{2}$.

Grade 597L (7 µm*)

A qualitative filter paper with low fat content. Suitable for nitrate determination in foodstuffs to §35 LMBG* (* LMBG = German law for food and consumer products).

Grade 597 Optima filter papers

Particle retention rating at 98% efficiency.

Grade 598 (8-10 µm*)

A thick filter paper with high loading capacity. Combines medium retention with medium-fast to fast filtration speed. Available fluted as Grade 598 ½.

Grade 602 h (< 2 µm*)

A dense filter paper for collecting very small particles and removing fine precipitates.

• Used in sample preparation (e.g. in the beverage industry for residual sugar determination, acidic spectra, refractometric analysis, and HPLC.

Available fluted as Grade 602 h $\frac{1}{2}$.

Grade 602 eh (2 µm*)

These cellulose filters are used in qualitative analytical techniques to determine and identify materials. A standard grade filter paper for very fine precipitates. Used for recovery of microfine ultrapure crystalline components (< 1 μ m) in alkaline tests in waste analysis (e.g. soils, filter dust, ash, ore/slag waste).

Available fluted as Grade 602 eh ½.

Filter papers – Cellulose filters

Technical specifications

Qualitative filter papers—standard grades

Grade	Description	Typical particle retention in liquid (µm)¹	Filtration speed (approx) herzberg (s)	Nominal air flow (s/100 mL/in²)	Nominal thickness (µm)	Nominal basis weight (g/m²)	Typical water flow rate (mL/min)²	Nominal ash content (%)³
1	-	11	-	13	180	87	57	0.06
2	-	8	-	20	190	97	38	0.06
3	Thick	6	-	26	390	185	28	0.06
4	-	25	37	4	210	92	247	0.06
5	-	2.5	1420	96	200	100	5	0.06
6	-	3	-	32	180	100	22	0.15
591	Medium fast, thick	7–12	45	5.9	350	161	-	-
595	Medium fast, thin	4–7	80	-	150	68	-	-
597	Medium fast	4–7	140	-	180	85	-	-
597L	Medium fast, low fat	7	170	-	180	82	-	-
597 Optima	Medium fast	4–7	300	-	190	85	-	-
598	Medium fast, thick	8–10	50	-	320	140	-	-
602 h	Slow, dense	< 2	375	-	160	84	-	-
602 eh	Very slow, very dense	2	3000	-	150	85	-	-

¹ Particle retention rating at 98% efficiency

² For 9 cm diameter

 3 $\,$ Ash is determined by ignition of the cellulose filter at 900°C in air $\,$

Ordering information

Qualitative filter circles—standard grades

			C	atalog number			
Diameter (mm)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Quantity/pack
10	1001-6508	-	-	-	-	-	500
15	1001-0155	-	-	-	-	-	500
20	1001-020	-	-	-	-	-	400
23	-	-	1003-323	-	-	-	100
25	1001-325	-	-	-	1005-325	-	100
25	1001-025	-	-	-	-	-	400
27	-	-	-	1004-027	-	-	400
30	1001-329	-	-	-	-	-	100
30	1001-030	-	-	-	-	-	400

Qualitative filter circles—standard grades (continuation)

		Catalog number					
Diameter (mm)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Quantity/pack
32	1001-032	-	-	-	-	-	100
41	-	-	-	1004-041	-	-	100
42.5	1001-042	1002-042	-	1004-042	1005-042	1006-042	100
47	1001-047	1002-047	-	1004-047	1005-047	-	100
50	-	-	-	1004-050	-	-	100
55	1001-055	1002-055	1003-055	1004-055	1005-055	-	100
60	-	-	-	-	1005-060	-	100
70	1001-070	1002-070	1003-070	1004-070	1005-070	1006-070	100
76.2	1001-10035						500
82	1001-082	-	-	-	-	-	100
85	1001-085	-	-	-	-	-	100
90	1001-090	1002-090	1003-090	1004-090	1005-090	1006-090	100
90	1001-10048	1002-10048					5000
110	1001-110	1002-110	1003-110	1004-110	1005-110	1006-110	100
125	1001-125	1002-125	1003-125	1004-125	1005-125	1006-125	100
145	1001-045	-	-	-	-	-	100
150		1002-147	-	-	-	-	100
150	1001-150	1002-150	1003-150	1004-150	1005-150	1006-150	100
185	1001-185	1002-185	1003-185	1004-185	1005-185	1006-185	100
240	1001-240	1002-240	1003-240	1004-240	1005-240	1006-240	100
270	1001-270	1002-270	-	1004-270	-	-	100
320	1001-320	1002-320	1003-320	1004-320	1005-320	-	100
385	1001-385	1002-385	-	-	-	-	100
400	1001-400	-	-	1004-400	-	-	100
500	1001-500	1002-500	-	-	-	-	100

Qualitative filter circles—standard grades

Diameter (mm)	Grade 595	Grade 597 Optima	Grade 597	Grade 598	Grade 602 h	_ Quantity/pack
12.7	-	989410108	10311862	-	-	1000
45	-	989410101	10311804	-	-	100
55	-	98949552	10311807	-	-	100
70	-	989410102	10311808	-	-	100
90	-	98949329	10311809	10312209	10312609	100
110	10311610	989410103	10311810	-	-	100
125	10311611	989410104	10311811	-	10312611	100
150	10311612	98949613	10311812	-	10312612	100
185	10316114	989410105	10311814	-	10312614	100
240	-	989410106	10311820	-	10312620	100
320	-	989410107	10311822	-	-	100

Ordering information

Qualitative filter sheets—standard grades

Dimensions (mm)	Catalog number	Quantity/pack
Grade 1		
26 × 31	1001-813	1000
75 × 100	1001-824	500
460 × 570	1001-917	100
460 × 570	1001-918	500
580 × 680	1001-931	100
580 × 680	1001-932	500
600 × 600	1001-929	100
Grade 2		
460 × 570	1002-917	100
580 × 680	1002-931	100
600 × 600	1002-929	100
Grade 3		
460 × 570	1003-917	100

Qualitative filter sheets—standard grades (continuation)

Dimensions (mm)	Catalog number	Quantity/pack
Grade 4		
460 × 570	1004-917	100
580 × 580	1004-930	100
6 × 6 in	1004-492	100
Grade 591		
580 × 580	10311387	250
Grade 595		
580 × 580	10311687	500
Grade 597		
580 × 580	10311887	500
580 × 580	10311897	100
Grade 597 Optima		
580 × 580	989410110	100
580 × 580	989410109	500
Grade 598		
580 × 580	10312287	250

Ordering information

Qualitative filter reels—standard grades

Catalog number					_
Dimensions	Grade 4	Grade 597L	Grade 598	Grade 602 eh	Quantity/pack
10 mm × 50 m	-	-	-	10312500	20
38 mm × 30 m*	1004-648	-	-	-	1
40 mm × 100 m	-	10312070		-	10
500 mm × 100 m	-	-	10312000	-	1

* Approximate dimensions

Quantitative filter papers-ashless grades

Whatman quantitative filters are designed for gravimetric analysis and the preparation of samples for instrument analysis. They are available in three formats designed for specific requirements.

- Ashless: 0.007% ash nominal for Grades 40 to 44 and a typical nominal ash content of 0.01% for the 589 Grades. These filters are very pure and suitable for a wide range of critical analytical filtration procedures.
- Hardened low ash: 0.015% ash nominal—treated with a strong acid to remove trace metals and produce high wet strength and chemical resistance. These filters are particularly suitable for Büchner filtration where the tough, smooth surface of the filter makes it easy to recover precipitates.
- Hardened ashless: 0.005% ash nominal, acid hardened to give high wet strength and chemical resistance with extremely low ash content. The tough surface makes these filters suitable for a wide range of critical filtration procedures.

Grade 40: 8 µm*

The classic general purpose ashless filter paper with medium speed and retention. Typical applications include gravimetric analysis for numerous components in cements, clays, iron, and steel products; as a primary filter for separating solid matter from aqueous extracts in general soil analysis; quantitative determination of sediments in milk, and as a pure analytical grade clean-up filter for solutions prior to AA spectrometry. Also used as a high-purity filter in the collection of trace elements and radionuclides from the atmosphere.

Quantitative filter papers, ashless

Grade 41 (20 µm*)

The fastest ashless filter paper, recommended for analytical procedures involving coarse particles or gelatinous precipitates (e.g. iron or aluminum hydroxides). Also used in quantitative air pollution analysis as a paper tape for impregnation when determining gaseous compounds at high flow rates.

Grade 42 (2.5 µm*)

Used for critical gravimetric analysis with the finest particle retention of all Whatman cellulose filter papers. Typical analytical precipitates include barium sulfate, metastannic acid, and finely precipitated calcium carbonate.

Grade 43 (16 µm*)

Intermediate in retention between Grades 40 and 41, and twice as fast as Grade 40. Typical applications include foodstuffs analysis, soil analysis, particle collection in air pollution monitoring for subsequent analysis by XRF techniques, and inorganic analysis in the construction, mining, and steel industries.

Grade 44 (3 µm*)

Thin version of Grade 42 retaining very fine particles but with lower ash weight per sample and almost twice the flow rate of Grade 42.

Grade 589/1 (12-25 µm*)

Black Ribbon Filter: ashless filter paper with very high flow rate. Used for many quantitative standard methods, especially for gravimetric applications (e.g. determination of the ash content in foodstuffs or for the Blaine test in the cement industry). Also available fluted as Grade 589/1 ½.

Grade 589/2 (4-12 µm*)

White Ribbon Filter: ashless standard filter paper for medium fine precipitates offering medium filtration speed. Applied in a variety of routine methods in quantitative analysis, (e.g. determination of the sand content in foodstuffs, determination of the grade of flour or analysis of aqueous suspensions in the paper industry).

Also available fluted as Grade 589/2 1/2.

Grade 589/3 (2 µm*)

Blue Ribbon Filter: ashless standard filter paper for very fine precipitates. Slow filter paper with highest efficiency for collecting very small particles. Also used for many analytical routine methods in different industries (e.g. determination of the amount of insoluble contaminants in animal and vegetable fats and oils).

* Particle retention rating at 98% efficiency

Technical specifications

Quantitative filter papers—ashless grades

Grade	Typical particle retention in liquid (μm) ¹	Filtration speed (approx) herzberg (s)	Nominal ash content (%)³	Nominal thickness (µm)	Nominal basis weight (g/m²)	Typical water flow rate (mL/min)²	Nominal air flow rate (s/100 mL/in²)				
40	8	-	0.007	210	95	25	21				
41	20	-	0.007	215	85	254	4				
42	2.5	-	0.007	200	100	5	96				
43	16	-	0.007	220	95	62	11				
44	3	-	0.007	176	80	11	56				
589/1	12–25	25	0.01	190	80	-	-				
589/2	4–12	70	0.01	180	85	-	-				
589/3	2	375	0.01	160	84	-	-				

¹ Particle retention rating at 98% efficiency

² For 9 cm diameter

³ Ash is determined by ignition of the cellulose filter at 900°C in air

Whatman ashless quantitative filter paper circles

Quantitative filter papers—ashless grades

				Cat	alog number				
Diameter (mm)	Grade 40	Grade 41	Grade 42	Grade 43	Grade 44	Grade 589/1	Grade 589/2	Grade 589/3	Quantity/pack
Filter circles									
12.7	1440-012	-	-	-	-	-	-	-	400
12.7	-	-	-	-	-	-	10300102	10300263	1000
25	1441-6309	1441-6309	-	-	-	-	-	-	10000
30	1440-329	-	-	-	-	-	-	-	100
32	1440-032	-	-	-	-	-	-	-	100
40.5	-	-	-	-	-	-	10300103	-	100
42.5	1440-042	1441-042	1442-042	-	-	-	-	-	100
47	1440-047	1441-047	1442-047	-	-	-	-	-	100
50	-	1441-050	-	-	-	-	10300106	-	100
55	1440-055	1441-055	1442-055	-	-	-	10300107	-	100
60	-	1441-060	-	-	-	-	-	-	100
70	1440-070	1441-070	1442-070	-	1444-070	-	10300108	-	100
79	-	-	1442-10055	-	-	-	-	-	100
90	1440-090	1441-090	1442-090	1443-090	1444-090	10300009	10300109	-	100
110	1440-110	1441-110	1442-110	1443-110	1444-110	10300010	10300110	10300210	100
125	1440-125	1441-125	1442-125	1443-125	1444-125	10300011	10300111	10300211	100
142	-	-	-	-	-	-	-	10300213	100
150	1440-150	1441-150	1442-150	1443-150	1444-150	10300012	10300112	10300212	100
185	1440-185	1441-185	1442-185	1443-185	1444-185	10300014	10300114	10300214	100
240	1440-240	1441-240	1442-240	-	1444-240	-	10300120	-	100
320	1440-320	1441-320	1442-320	-	-	-	-		100
450	1440-6168	-	-	-	-	-	-	-	100
500	-	-	-	-	-	-	-	-	100
700	-	-	-	-	-	-	-	-	100
Filter sheets									
25.4 × 90	-	-	1442-6551	-	-	-	-	-	100
203 × 254	-	1441-866	_	_	-	-	_	-	100
460 × 570	1440-917	1441-917	1442-917	-	-	-	-	-	100
Flag shape	_	-	1442-971	-	_	-	-	-	100

Quantitative filter papers—hardened low ash grades

The maximum ash content of these grades is intermediate between ashless and qualitative grades. They are particularly suitable for Büchner filtrations where it is desirable to recover the precipitate from the filter surface after filtration. Other characteristics include high wet strength and chemical resistance, which are similar to the acid hardened ashless filter papers.

Grade 50 (2.7 µm*)

Retention of very fine crystalline precipitates. The thinnest of all Whatman filter papers with a slow flow rate, these filters have a hardened and highly glazed surface, which also keeps the paper free from loose surface fibers. Highly suitable for qualitative or quantitative filtrations requiring vacuum assistance on Büchner or 3-piece filter funnels. Very strong when wet and will withstand wet handling and precipitate removal by scraping. In the electronics industry, the virtual absence of fiber shedding is utilized in carriers for integrated circuits.

This grade is also available in Smear Tab format for wipe testing (e.g. testing of surfaces for radionuclide contamination).

Grade 52 (7 µm*)

The general purpose hardened filter paper with medium retention and flow rate. Very hard surface.

Grade 54 (22 µm*)

Very fast filtration and high wet strength makes this grade very suitable for vacuum assisted fast filtration of difficult coarse or gelatinous precipitates.

Particle retention rating at 98% efficiency.

Technical specifications

Quantitative filter papers—ashless grades

Grade	Typical particle retention in liquid (μm)¹	Nominal ash content (%) ³	Nominal thickness (µm)	Nominal basis weight (g/m²)	Typical water flow rate (mL/min)²	Nominal air flow rate (s/100 mL/in²)	Nominal air flow rate (s/100 mL/in²)
50	2.7	0.015	115	96	10	144	21
52	7	0.015	175	96	66	15	-
54	22	0.015	185	90	453	3	-

Particle retention rating at 98% efficiency

For 9 cm diameter

³ Ash is determined by ignition of the cellulose filter at 900°C in air

Hardened low ash quantitative filter papers

Quantitative filter papers—hardened low ash grades

		er			
Dimensions (mm)	Grade 50	Grade 52	Grade 54	Quantity/pack	
Filter circles					
42.5	1450-042	-	-	100	
55	1450-055	-	1454-055	100	
63.5	1450-063	-	-	100	
70	1450-070	-	1454-070	100	
90	1450-090	1452-090	1454-090	100	
110	1450-110	1452-110	1454-110	100	
125	1450-125	1452-125	1454-125	100	
150	1450-150	1452-150	1454-150	100	
185	1450-185	-	1454-185	100	
240	1450-240	1452-240	1454-240	100	
320	1450-320	-	1454-320	100	
500	1450-500	-	1454-500	100	
Smear Tab	1450-993	-	-	100	
Filter sheets					
150 × 230	1450-916	-	-	100	
460 × 570	1450-917	-	1454-917	100	

Hardened low ash quantitative filter papers

Quantitative filter papers—hardened ashless grades

Hardened ashless filter papers are suited for a variety of precipitate sizes. Along with general filtration Grade 540, the range includes Grade 542 for retention of fine precipitates and Grade 541 for fast filtration. All three grades are designed for use in gravimetric analysis.

These filter papers exhibit high wet strength and chemical resistance and are acid hardened, which reduces ash to an extremely low level. Their tough surfaces make them suitable for a wide range of critical analytical filtration operations. Each grade offers a convenient combination of filtration speed and particle retention.

Grade 540 (8 µm*)

A general purpose hardened ashless filter paper with medium retention and flow rate. Extremely pure and strong with a hard surface. High chemical resistance to strong acid and alkali. Frequently used in the gravimetric analysis of metals in acid/alkali solutions and in collecting hydroxides after precipitation by strong alkalis.

Grade 541 (22 µm*)

The general purpose hardened filter paper with medium retention and flow rate. Very hard surface.

Grade 542 (2.7 µm*)

High retention of fine particles under demanding conditions. Slow flow rate. Very hard and strong with excellent chemical resistance. Often used in gravimetric metal determinations.

* Particle retention rating at 98% efficiency.

Technical specifications

Quantitative filter papers—hardened ashless grades

Grade	Typical particle retention in liquid (µm) ¹	Nominal ash content (%) ³	Nominal thickness (µm)	Nominal basis weight (g/m²)	Typical water flow rate (mL/min)²	Nominal air flow rate (s/100 mL/in²)
540	8	0.005	160	85	97	13
541	22	0.005	155	78	359	3
542	2.7	0.005	150	96	13	64

¹ Particle retention rating at 98% efficiency

² For 9 cm diameter

³ Ash is determined by ignition of the cellulose filter at 900°C in air

Hardened ashless quantitative filter papers, Grade 540

Quantitative filter papers—hardened ashless grades

		Catalog numb		
Dimensions (mm)	Grade 540	Grade 541	Grade 542	Quantity/pack
Filter circles				
21	1540-321	-	-	100
24	1540-324	-	-	100
42.5	1540-042	1541-042	-	100
47	-	1541-047	-	100
55	1540-055	1541-055	1542-055	100
70	-	1541-070	1542-070	100
90	1540-090	1541-090	1542-090	100
110	1540-110	1541-110	1542-110	100
125	1540-125	1541-125	1542-125	100
150	1540-150	1541-150	1542-150	100
185	1540-185	1541-185	1542-185	100
240	1540-240	1541-240	1542-240	100
270	-	1541-270	-	100
320	1540-320	1541-320	-	100
400	-	1541-400	1542-400	100
Filter sheets				
460 × 570	-	1541-917	-	100

Hardened ashless quantitative filter paper circles

Wet strengthened general purpose filter papers

Wet strengthened grades

These extremely strong filter papers have a high wet strength due to the addition of a small quantity of chemically stable resin. Their use in normal qualitative applications will not introduce any significant impurities into the filtrate. The resins do, however, contain nitrogen, so these grades should not be used in Kjeldahl estimations, etc. Some wet strengthened grades are available in folded (fluted) forms.

Grade 91 (10 µm*)

A general purpose creped filter for less critical routine analysis. Widely used to assay sucrose in cane sugar and within pharmaceutical laboratories for routine filtration.

Grade 93 (10 µm*)

This filter paper is intermediate in speed and retention between Grades 1 and 4. Available in a dispenser pack, which can be attached to the wall or bench, placed on a shelf either upright or flat, and used as a normal carton or as a convenient dispenser. The envelopes are released individually for easy one-at-a-time removal. Package and envelopes are clearly marked for size and content.

Grade 113 (30 µm*)

A fast, open filter paper with creped surface and high loading capacity — making it highly suited for use with coarse or gelatinous precipitates. Fastest flow rate of the qualitative grades.

Also available as Grade 113V.

Grade 114 (25 µm*)

Half the thickness of Grade 113 and suitable for coarse or gelatinous precipitates. Smooth surface for easy recovery of precipitates. Also available fluted as Grade 114V.

Grade 1573 (12-25 µm*)

A fast filter paper with high wet strength. It has a very smooth surface, making it easy to scrape or wash off precipitate. Resistant against: sulfuric and nitric acid solutions (up to 40% at 50°C), hydrochloric (up to 10% at 100°C, 20% at 60°C, 25% at 20°C) and alkalis (up to 10% at 20°C).

Also available fluted as Grade 1573 ¹/₂.

Grade 1574 (7-12 µm*)

A medium fast filter paper with high wet strength. This paper has the same chemical resistance characteristics as Grade 1573 (see above). Available fluted as Grade 1574 ¹/₂.

Grade 1575 (< 2 µm*)

Slow filter paper with high wet strength. This paper has the same chemical resistance characteristics as Grade 1573 (see above).

* Particle retention rating at 98% efficiency.

U	cytiva	
	FILTER PAPER	
	WET STRENGTHENED	
	and the second se	
	CAT No. 1091-185	
	Lot No. Soport	
	and a second sec	

Qualitative filter papers, Grade 91

Technical specifications

Wet strengthened grades

Grade	Description	Typical particle retention in liquid (μm)¹	Filtration speed (approx) herzberg (s)	Nominal air flow (s/100 mL/in²)	Nominal thickness (µm)	Nominal basis weight (g/m²)	Typical water flow rate (mL/min)²
91	Creped	10	-	6	205	65	274
93	Medium	10	-	7	145	65	194
113	Creped	30	-	2	420	125	774
114	-	25	-	4	190	75	333
1573	Fast, smooth	12–25	25	-	170	88	-
1574	Medium fast, very low fiber release	7–12	85	-	160	90	-
1575	Slow	< 2	700	-	140	92	-

¹ Particle retention rating at 98% efficiency

² For 9 cm diameter

Ordering information

Wet strengthened grades

	Catalog number								
Dimensions (mm)	Grade 91	Grade 93	Grade 113	Grade 114	Grade 1573	Grade 1574	Grade 1575	Quantity/pack	
Filter circles									
90	-	-	1113-090	1114-090	-	-	-	100	
110	1091-110	-	-	-	-	-	-	4000 [†]	
110	-	1093-110	1113-110	-	-	-	-	100	
110	-	1093-111*	-	-	-	-	-	1250	
125	1091-125	-	-	-	-	-	-	4000 [†]	
125	-	1093-125	1113-125	1114-125	-	-	-	100	
125	-	1093-126*	-	-	-	-	-	1250	
150	1091-150	1093-6215**	-	-	-	-	-	1000 [†]	
150	-	-	1113-150	1114-150	10314712	-	10314915	100	
165	1091-165	-	-	-	-	-	-	1000 [†]	
185	1091-185	-	-	-	-	-	-	1000 [†]	
185	-	-	1113-185	1114-185	10314714	-	10314914	100	
190	1091-190	-	_	-	-	-	-	1000 [†]	

* Packed 50 envelopes of 25 circles

** Packed 10 bags of 100 circles

[†] Subdivided into 100

Wet strengthened grades (continuation)

Catalog number								_
Dimensions (mm)	Grade 91	Grade 93	Grade 113	Grade 114	Grade 1573	Grade 1574	Grade 1575	Quantity/pack
200	-	-	-	-	-	-	10314916	100
240	1091-240	-	-	-	-	-	-	1000 [†]
240	-	-	1113-240	1114-240	10314720	-	-	100
290	-	-	-	-	10314726	-	-	100
320	-	-	1113-320	-	-	-	-	100
330	1091-330	-	-	-	-	-	-	100
400	-	-	-	1114-400	-	-	-	100
500	-	-	1113-500	-	-	-	-	100
685	-	-	-	-	-	10314828	-	100
Filter sheets								
580 mm × 580 mm	-	-	-	1114-930	-	-	-	100
580 mm × 580 mm	1091-930	1093-930	-	-	-	-	-	500
610 mm × 610 mm	1091-935	1093-935	-	-	-	-	-	500
460 mm × 570 mm	-	-	1113-917	-	-	-	-	100
Rolls								
25 mm × 145 m	-	-	-	-	10314769	-	-	1
25.5 mm × 210 m	-	-	-	-	10314766	-	-	1
70 mm × 80 m	-	-	-	-	10314765	-	-	1
70 mm × 100 m	-	-	-	-	-	10314871	-	1

Packed 50 envelopes of 25 circles
Packed 10 bags of 100 circles
Subdivided into 100

General purpose filter papers

These filter papers are made from super-refined cellulose and have been specifically designed to have particular properties for each application, ranging from the filtration of beverages to the purification of electroplating baths.

Grade 520 a (15-18 µm*)

A thin paper with great wet strength and a very high flow rate. Frequently used in technical applications such as the filtration of viscous liquids and emulsions (e.g. sweetened juices, spirits and syrups, resin solutions, oils, or plant extracts). Available fluted as Grade 520 a ½.

Grade 520 bll (15-19 µm*)

A thick paper with high wet strength offering a very high flow rate.

Grade 0858 (7–12 µm*)

Medium retention and flow rate with a grained surface. Used for the filtration of extracts, oils, beer, syrups, etc. Also suitable for use in filter presses or for the aspiration of liquids.

Available fluted as Grade 0858 1/2.

Grade 0903 (7 µm*)

A thin filter paper with smooth surface. Offers medium to slow flow rate and good retention for small particles.

Grade 0905 (12-25 µm*)

A creped paper for coarse particles, offering a very high filtration speed.

Grade 2294 (8–15 μm*) A very thick filter card with high wet strength. Offers very high flow rate and retains medium to coarse particles.

Grade 2589 a (6–12 µm*)

A fast to medium fast filter with high wet strength offering medium retention.

Grade 2589 c (4-8 µm*)

Thick filter with medium to slow filtration speed, high wet strength, and good retention for smaller particles.

Grade 2589 d (2-6 µm*)

A very thick filter with high wet strength. Offers medium to slow flow rate and retains very fine precipitates.

Grade Shark Skin (8-12 µm*)

Creped, medium to slow filter paper. Resistant to weak acids and bases. Often used as a protective paper for filter press cloths, as well as in processing of cocoa butter and edible oils.

Grade 2294 filter papers for technical use

Particle retention rating at 98% efficiency.

Technical specifications

General purpose filter papers

Grade	Description	Typical particle retention in liquid (µm)	Filtration speed (approx) herzberg (s)	Nominal air flow (s/100 mL/in²)	Nominal thickness (µm)	Nominal basis weight (g/m²)
520 a	Very fast, creped, high wet strength	15–18	17.5	-	300	90
520 b II	Very fast, creped, wet strength, thick	15–19	15	-	500	135
0858	Medium fast, grained	7–12	55	4.9	170	75
0903	Medium to slow, smooth	7	175	-	140	65
0905	Very fast, creped	12–25	20	-	270	75
2294	Fast, wet strength, thick	8–15	27.5	4.4	1500	556
2589 a	Medium fast, wet strength	6–12	60	-	430	200
2589 c	Medium to slow, wet strength	4-8	160	-	750	400
2589 d	Medium to slow, wet strength, thick	2-6	235	-	1000	500
Shark Skin™	Medium to slow, wet strength, thin, creped	8–12	77.5	-	170	44

Ordering information

General purpose filter papers

	Catalog number							
Dimensions (mm)	Grade 0858	Grade 0903	Grade 0905	Grade 520 a	Grade 520 bll	Shark Skin	Quantity/pack	
Filter sheets								
110 × 580	10334365	-	-	-	-	-	500	
390 × 390	10334383	-	-	-	-	-	500	
450 × 450	10334385	10334885	-	-	-	-	500	
580 × 580	-	-	10334987	-	-	-	500	
580 × 580	-	-	-	10331487	10331687	-	250	
300 × 250	-	-	-	-	-	10538877	100	
Filter reels								
21" × 750'	-	-	-	-	-	10537138	1	

Ordering information

General purpose filter papers

			_	
Filter sheets	Grade 2589 a	Grade 2589 c	Grade 2589 d	Quantity/pack
25 × 75	-	10343876	10343976	100
580 × 580	10343687	-	-	100

General purpose filter papers (continuation)

Dimensions (mm)	Grade 2294	Grade 2589 a	Shark Skin	Quantity/pack
Filter circles				
90	-	-	10347509	100
110	10342810	-	10347510	100
125	-	-	10347511	100
140	-	10343630	-	500
150	-	-	10347513	100
180	10342860 ¹	-	-	100
185	-	-	10347512	100
210	10342862 ²	-	-	100
240	-	-	10347519	100
270	-	-	10347521	100
290	-	-	10347577	100
320	-	-	10347530	100
340	-	-	10347522	100
385	-	-	10347523	100
500	-	-	10347525	100

¹ 180 mm with central hole 33 mm

² 210 mm with central hole 60 mm

Folded and fluted filter papers

Ready-to-use paper solutions

Many grades of our qualitative and quantitative filter paper are available as fluted circles. We also offer a selection of prefolded cones, quadrant-folded and pyramid-folded filter papers. These convenient formats eliminate time-consuming manual pleating or folding, streamlining operations in busy labs.

Whatman ready-to-use folded filter papers from Cytiva support your application needs, save valuable time and provide ease of use when undertaking repetitive or multiple analyses.

Fluted filter papers

This convenient format has major advantages over flat circles.

- · Savings in time required to quadrant-fold circles to fit conical filter funnels in repetitive or multiple analyses
- Decreased overall filtration time because of the extra surface area exposed; the normal slow-down of filtration speed due to the loading of particulate is postponed
- Increased total loading capacity as more filter area is available
- · Maintained flow rate due to the reduction in filter paper contact with funnel side and the self-supporting shape of the filter itself
- · The prepleating does not significantly affect any of the technical data and the same figures may be used for the flat circles

Additional folded formats

Qualitative and quantitative grades are now available in several convenient folded formats. These ready-to-use paper filters are available in cone, pyramid, and flat quadrant folded formats, in diameters and grades to support your applications.

Whatman pyramid, flat quadrant-folded and cone filters come in a range of media and diameters, and fit conical funnels. Convenient stacking and packaging options are available.

eh cytiya			
O share			
C cytive 113V mit anticultures to mit anticultures antices to mit antices to mit	Moran		

Folded and fluted filter papers, 113V

Folded and fluted papers

Available formats and grades

Equivalent flat stock grade	Туре	Fluted	Quadrant-folded	Cone folded	Pyramid-folded
1	Qualitative	1V	1 FF	1	-
2	Qualitative	2V	-	-	-
4	Qualitative	4V	-	-	4
5	Qualitative	5V	-	-	-
6	Qualitative	-	-	-	6
40	Ashless	-	40 FF	40	40
41	Ashless	-	41 FF	-	41
42	Ashless	-	-	-	42
113	Wet strengthened	113V	-	-	-
114	Wetstrengthened	114V	-	-	-
-	Kieselguhr paper	287 1⁄2	-	-	-
-	Qualitative	512 ½	-	-	-
520 a	General purpose	520 a ½	-	-	-
520 b ll	General purpose	520 b FF	-	-	-
540	Hardened ashless	-	-	-	540
-	Qualitative	-	-	-	-
-	Qualitative	593 1⁄2	-	-	-
-	Qualitative	594 1⁄2	-	-	-
595	Qualitative	595 1⁄2	-	-	-
597	Qualitative	597 1⁄2	-	-	-
598	Qualitative	598 1⁄2	-	-	-
602 h	Qualitative	602 h ½	-	-	-
602 eh	Qualitative	602 eh ½	-	-	-
-	Qualitative	604 1⁄2	-	-	-
-	Qualitative	0790 1⁄2	-	-	-
-	Qualitative	802	-	-	-
858	General purpose	0858 1⁄2	0858 FF	-	-
-	Qualitative	0860 1⁄2	-	-	-
1573	Wet strengthened	1573 ½	-	-	-
1574	Wet strengthened	1574 ½	-	-	-
-	Qualitative	2555 ½	-	-	-

Grade 1V and 1 FF (11 µm*)

A folded filter paper for routine applications with medium retention and flow rate. Covers a wide range of laboratory applications and is frequently used for clarifying liquids.

Grade 2V (8 µm*)

Widely used for general purpose filtration. Has excellent particle retention and a good filtration speed and loading capacity.

Grade 4V (25 µm*)

Extremely fast filtering with excellent retention of coarse particles and gelatinous precipitates such as ferric hydroxide and aluminum hydroxide.

Grade 5V (2.5 µm*)

The maximum degree of fine particle filtration in the qualitative range. Capable of retaining the fine precipitates encountered in chemical analysis. Slow flow rate. Excellent clarifying filter for cloudy suspensions and for water and soil analysis.

Grade 6

Twice as fast as Grade 5 with similar fine particle retention. Often specified for boiler water analysis applications.

Grade 40 and 40 FF

The classic general purpose ashless filter paper with medium speed and retention. Typical applications include gravimetric analysis for numerous components in cements, clays, iron, and steel products; as a primary filter for separating solid matter from aqueous extracts in general soil analysis; quantitative determination of sediments in milk, and as a pure analytical grade clean-up filter for solutions prior to AA spectrometry. Also used as a high-purity filter in the collection of trace elements and radionuclides from the atmosphere.

Grade 41 and 41 FF

The fastest ashless filter paper, recommended for analytical procedures involving coarse particles or gelatinous precipitates (e.g. iron or aluminum hydroxides). Also used in quantitative air pollution analysis as a paper tape for impregnation when determining gaseous compounds at high flow rates.

Grade 42

Used for critical gravimetric analysis with the finest particle retention of all Whatman cellulose filter papers. Typical analytical precipitates include barium sulfate, metastannic acid, and finely precipitated calcium carbonate.

Grade 113V (30 µm*)

Very thick and strong filter with creped surface for extremely high loading capacity, particularly in folded form. Fastest flow rate of any qualitative grade. Excellent for coarse particles and gelatinous precipitates.

Grade 114V (25 µm*)

Strong filter with very fast flow rate. Excellent for coarse particles and gelatinous precipitates. Smooth surface.

* Particle retention rating at 98% efficiency.

Quadrant flat folded filter papers

Grade 287 1/2

Kieselguhr paper with a medium to slow flow rate. Additional adsorption effect (e.g. for the separation of very fine semi-colloidal turbidity, for clarifying milk serum, starch solutions, soil suspensions, or sugar-containing solutions prior to polarimetry or refractometry).

Grade 512 1/2

Low phosphate papers approximately 1.5 ppm phosphate, for the filtration of calcium lactate extracts from soil samples for the determination of K and P according to Egnér, Riehm and Lederle

Grade 520 a 1/2 (15-18 µm*)

A thin paper with great wet strength and a very high flow rate. Frequently used in technical applications such as the filtration of viscous liquids and emulsions (e.g. sweetened juices, spirits and syrups, resin solutions, oils or plant extracts).

Grade 520 b FF

A filter paper with high wet strength offering a very high flow rate.

Grade 540

A general purpose hardened ashless filter paper with medium retention and flow rate. Extremely pure and strong with a hard surface. High chemical resistance to strong acid and alkali. Frequently used in the gravimetric analysis of metals in acid/alkali solutions and in collecting hydroxides after precipitation by strong alkalis.

Grade 593 ½ (5 µm*)

A standard grade filter paper for fine precipitates.

Grade 594 1/2 (4 µm*)

A standard grade filter paper for fine precipitates.

Grade 595 1/2 (4-7 µm*)

A thin filter paper, medium-fast with medium to fine particle retention. Used for many routine analytical applications in different industries (e.g. particle separation from food extracts or filtration of solids from digested environmental samples for ICP/AAS analysis).

Grade 597 1/2 (4-7 µm*)

A medium fast filter paper with medium to fine particle retention. Used for a wide variety of analytical routine applications in different industries like food testing (e.g. determination of fat content) or removal of carbon dioxide and turbidity from beverages (e.g. beer analysis).

Grade 598 1/2 (8-10 µm*)

A thick filter paper with high loading capacity. Combines medium retention with medium-fast to quick filtration speed.

Grade 602 h ½ (< 2 µm*)

A dense filter paper for collecting very small particles and removing fine precipitates. Used in sample preparation (e.g. in the beverage industry for residual sugar determination, acidic spectra, refractometric analysis, and HPLC).

Grade 602 eh 1/2 (2 µm*)

A qualitative filter paper for very fine precipitates..

Grade 604 1/2 (25 µm*)

Grade 6041/2 qualitative filter paper for coarse precipitates.

Grade 802

A fluted filter for use with a conical filter funnel, offering fast filtration and high loading capacity for analysis involving coarse particles or gelatinous precipitates.

The filter is wet-strengthened and for normal qualitative application it will not introduce any significant impurities into the filtrate. However, it is not recommended for Kjeldahl nitrogen analysis.

Grade 0858 $\frac{1}{2}$ and 858 FF (7–12 $\mu m^*)$

Medium retention and flow rate with a grained surface. A universal filter paper used for the filtration of extracts, oils, beer, syrups, etc., also suitable for use in filter presses or for the aspiration of liquids.

Grade 1573 1/2 (12-25 µm*)

A fast filter paper with high wet strength. It has a very smooth surface, making it easy to scrape or wash off precipitate. Resistant against: sulfuric and nitric acid solutions (up to 40% at 50°C), hydrochloric (up to 10% at 100°C, 20% at 60°C, 25% at 20°C), alkalis (up to 10% at 20°C).

Grade 1574 1/2 (7-12 µm*)

A medium fast filter paper with high wet strength. This paper has the same chemical resistance characteristics as Grade 1573 ¹/₂ (see above).

Grade 2555 ½ (12 µm*)

A medium fast filter paper. Used for the filtration of the mash for the determination of the extract in malt and wort and for removing carbon dioxide from beer.

Grade 0790 1/2

Acid-washed paper with ash content of approximately 0.01%, low magnesium, and phosphorus for the determination of trace elements (Mg, Mn, Co, Cu, Mo, B).

Cone folded filter papers

Technical specifications

Fluted grades

Grade	Description	Typical particle retention in liquid (µm)¹	Filtration speed (approx) herzberg (s)	Nominal thickness (µm)	Nominal basis weight (g/m²)	Typical water flow rate (mL/min)²	Nominal ash content (%) ³
1V	Medium flow	11	-	180	87	57	0.06
2V	-	8	-	190	97	38	-
4V	Very fast	25	-	210	92	247	0.06
5V	Slow	2.5	-	200	92	5	-
113V	Creped	30	_	420	125	774	_
114V		25	_	190	75	333	-
287 1⁄2	Kieselguhr	-	330	360	154	_	-
520 a ½	Very fast, creped, high wet strength	15-18	17.5	300	90	-	-
520 b FF	Very fast, wet strength, extra thick	20	30	500	155	_	_
593 1⁄2	Medium to slow	5	450	170	85	_	_
594 1⁄2	Slow	4	800	150	75	_	_
595 1⁄2	Medium fast, thin	4-7	80	150	68	_	_
597 ½	Medium fast	4-7	70	180	85	-	-
598 1⁄2	Medium fast, thick	8-10	50	320	140	-	-
602 h ½	Slow, dense	< 2	375	160	84	-	-
602 eh ½	Very slow, very dense	2	3000	150	85	-	-
604 1⁄2	Fast	25	50	190	80	-	-
802	Fast	-	-	-	73	-	-
0858 1⁄2	Medium fast, grained	7-12	55	170	75	-	-
0860 1⁄2	Medium fast, smooth	12	60	170	75	-	-
1573 ½	Fast, smooth	12-25	25	170	88	-	-
1574 ½	Medium fast, very low fiber release	7-12	85	160	90	-	-
2555 1⁄2	Medium fast	12	55	170	75	-	-

Particle retention rating at 98% efficiency
For 9 cm diameter
Ash is determined by ignition of the cellulose filter at 900°C in air

Filter papers—fluted grades

	Catalog number Qu					Quantity			
Dimensions (mm)	Grade 1V	Grade 2V	Grade 4V	Grade 5V	Grade 113V	Grade 114V	Grade 287 ½	Grade 520 a ½	/pack
110	-	-	-	1205-110	-	-	-	-	100
125	1201-125	1202-125	1204-125	-	1213-125	1214-125	-	-	100
125	-	-	-	-	-	-	10310244	-	50
150	-	-	-	-	-	-	10310245	-	50
150	1201-150	1202-150	1204-150	-	1213-150	1214-150		-	100
185	-	-	-	-	-	-	10310247	-	50
185	1201-185	1202-185	1204-0185	1205-185	1213-185	1214-185		-	100
240	1201-240	1202-240	1204-240	-	1213-240	1214-240	-	10331451	100
270	1201-270	1202-270	1204-270	-	1213-270	-	-	-	100
320	1201-320	1202-320	1204-320	-	1213-320	1214-320		-	100
385	-	1202-385	-	-	-	-	-	-	100
400	-	1202-400	-	-	-	-	-	-	100
500	-	1202-500	-	-	1213-500	-	-	10331456	100

Ordering information

Filter papers—fluted grades

	Catalog number						Quantity	
Dimensions (mm)	Grade 520 b FF	Grade 593 ½	Grade 594 ½	Grade 595 ½	Grade 597 1/2	Grade 598 ½	Grade 602 h ½	/pack
70	-	-	-	10311641	10311841	-	-	100
90	-	-	-	10311642	10311842	-	10312642	100
110	-	-	-	10311643	10311843	-	-	100
125	-	-	-	-	-	10312244	-	50
125	-	-	-	10311644	10311844	-	10312644	100
150	-	-	-	10311645	10311845	-	10312645	100
185	-	-	-	-	-	10312247	-	50
185	-	10311447	10311547	10311647	10311847		10312647	100
210	-	-	-	10311649	-	-	-	100
240	10331551	-	-	-	-	10312251	-	50
240	-	10311451	-	10311651	10311851	-	10312651	100
270	-	-	-	10311652	10311852	-	-	100
320	10331553	-	-	-	-	-	-	50
320	-	-	-	10311653	10311853	-	-	100
385	10331554	-	-	-	-	-	-	50
385	-	-	-	10311654	10311854	-	-	100
500	10331556	-	-	-	-	10312256	-	50
500	-	-	-	10311656	10311856	-	-	100
600	10331558	-	-	-	-	-	-	50

Filter papers—fluted grades

	Catalog number					Quantity		
Dimensions (mm)	Grade 602 eh ½	Grade 604 ½	Grade 0858 ½	Grade 0860 ½	Grade 1573 ½	Grade 1574 ½	Grade 2555 ½	/pack
110	-	-	-	-	-	10314843	-	100
125	10312544	10312744	-	-	10314744	10314844	-	100
150	10312545	10312745	10334345	-	10314745	-	-	100
185	-	10312747	10334347	10334547	10314747	-	10313947	100
240	-	10312751	10334351	10334551	10314751	-	10313951	100
270	-	-	10334352	-	10314752	-	-	100
320	-	10312753	10334353	10334553	10314753	-	10313953	100
Sheets								
100 mm × 300 mm	-	-	-	10334500	-	-	-	500
570 mm × 870 mm	-	-	10334346	-	-	-	-	100
670 mm × 770mm	-	-	10334435	-	-	-	-	100

Ordering information

Quantitative filter papers—ashless fluted grades

	Catalog number		
Dimensions (mm)	Grade 589/1 ½	Grade 589/2 ½	/pack
110	-	10300143	100
150	10300045	10300145	100

For further information on these grades see Quantitative Filter Papers section.

Ordering information

Filter papers—wet strengthened fluted grades

Dimensions (mm)	Grade 589/1 ½	Grade 589/2 ½	Quantity /pack
125	Grade 802	5802-125	100
150	Grade 802	5802-150	100
185	Grade 802	5802-185	100
240	Grade 802	5802-240	100
240	Grade 802	5802-6698	1000
320	Grade 802	5802-320	100
385	Grade 802	5802-385	100

Filter papers quadrant folded

Grade	Nominal thickness (µm)	Nominal basis weight (g/m²)	Nominal ash content (%) ¹
1 FF	180	87	0.06
40 FF	210	95	0.007
41 FF	215	85	0.007
0858 FF	170	75	-

¹ Ash is determined by ignition of the cellulose filter at 900°C in air

Ordering information

Filter papers quadrant folded

Diameter (mm)	Description	Catalog number	Quantity/pack
110	Grade 1 FF Quadrant	10380404	500
125	Grade 1 FF Quadrant	10380405	500
150	Grade 1 FF Quadrant	10380406	500
110	Grade 40 FF Quadrant	10380004	500
125	Grade 40 FF Quadrant	10380005	500
150	Grade 40 FF Quadrant	10380006	500
110	Grade 41 FF Quadrant	10380204	500
125	Grade 41 FF Quadrant	10380205	500
150	Grade 41 FF Quadrant	10380206	500
185	Grade 0858 FF Quadrant	10334348	100

Ordering information

Filter papers—pyramid folded and cone grades

Grade	Nominal thickness (µm)	Nominal basis weight (g/m²)	Nominal ash content (%) ¹
1	180	87	0.06
4	210	92	0.06
6	180	100	0.15
40	210	95	0.007
41	215	85	0.007
42	200	100	0.007
540	160	85	0.005

¹ Ash is determined by ignition of the cellulose filter at 900°C in air

44 FF quadrant flat folded filter papers

Filter papers—pyramid folded grades

Diameter (mm)	Grade	Catalog number	Quantity/pack	
90	42	989610137	1000	
90	540	1540-10123	1000	
110	4	989810116	1000	
110	41	989510116	1000	
110	42	989610116	1000	
110	540	1540-10124	1000	
125	1	989710112	1000	Pyrami
125	4	989810112	1000	
125	6	9891-128	1000	
125	40	9892-128	1000	
125	41	989510112	1000	
125	42	989610112	1000	

Pyramid folded filter papers

Ordering information

Filter papers—cone folded grades

Diameter (mm)	Grade	Catalog number	Quantity/pack
110	Grade 1	990110116	1000
110	Grade 40	990010116	1000
125	Grade 40	990010112	1000

The above table is an example of products set-up; please contact us at scientific.support@cytiva.com for a full listing of available products.

Cone folded filter papers

Application specific filter papers

Cytiva offers Whatman cellulose filter papers for specific applications. The product range includes filter papers for use in soil analysis and for the sugar industry.

Grade 0048

Filter mat made from a mixture of cellulose and polyester. This mat is used for optically testing baby food (artificial milk) for textile fibers.

Grade 72

Composite cellulose/glass filter loaded with activated carbon. Used to absorb radioactive iodine in air pollution monitoring and in nuclear installations.

Grade 71

Similar to Grade 72 but has a higher level of activated carbon.

Grade 8 ruled filter paper

A white filter paper with printed green lines for optical assessment (5 mm intervals). For routine investigations of foreign substances in a variety of sample types.

Grade 1450CV

Filter paper for the identification of undissolved dyes in the textile industry.

Grade 0965

A coarse filter mat with high wet strength.

Grade 287 1/2

Kieselguhr paper with a medium to slow flow rate. Additional adsorption effect (e.g. for the separation of very fine semi-colloidal turbidity, for clarifying milk serum, starch solutions, soil suspensions, or sugar-containing solutions prior to polarimetry or refractometry). Fluted.

Grade 2555 1/2

A medium fast filter paper. Used for the filtration of the mash for the determination of the extract in malt and wort and for removing carbon dioxide from beer. Fluted.

Whatman application filter papers

Soil analysis filter papers

Grade 0790 1/2

Acid-washed paper with ash content of approximately 0.01%, low magnesium, and phosphorus for the determination of trace elements (Mg, Mn, Co, Cu, Mo, B). Fluted.

Grade 512 1/2

Low phosphate papers approximately 1.5 ppm phosphate, for the filtration of calcium lactate extracts from soil samples for the determination of K and P according to Egnér, Riehm and Lederle. Fluted.

Sugar and food industry filter papers

Grade 3459

A creped filter paper, Grade 3459 has good retentivity at a relatively high filtration speed. Used for the clarifying filtration of:

- Dried beet pulp extracts
- Beet juice after the addition of lead acetate for subsequent polarimetric sugar determination
- Grade 3459 is specifically designed for the Venema unit (lead acetate method)

Technical specifications

Application specific filters

Grade	Properties	Filtration speed (approx) herzberg (s)	Nominal thickness (µm)	Nominal basis weight (g/m²)
Soil analysis	filter papers			
0790 1⁄2	Low Mg and P	225	-	84
512 ½	Low phosphate	375	-	84
Specially for	r the venema unit			
3459	Fast, creped	55	-	75
Malt and bee	er filter			
2555 1⁄2	Medium fast	55	-	75
Food indust	ry mat (cellulose/polyester)			
0048	-	-	0.86	130
Activated ca	arbon loaded paper			
72	-	-	-	195
71	-	-	702-898	160-230
Kieselguhr p	paper			
287 1⁄2	Kieselguhr	330	360	154
Filter mat				
0965	-	-	250	30
Identificatio	on of undissolved dyes			
1450CV	-	30	-	120
Routine inve	estigations			
8		_	_	65

Application specific filters

	Catalog number							
Dimensions (mm)	Grade 0048	Grade 72	Grade 71	Grade 0965	Grade 1450CV	Grade 8	Grade 3459	/pack
Filter circles								
32	10348903	-	-	-	-	-	-	1000
45	-	-	-	-	-	10347004	-	100
47	-	1872-047	-	-	-	-	-	100
50	-	1872-050	-	-	-	-	-	100
55	-	1872-055	-	-	-	-	-	100
60	-	1872-060	-	-	-	-	-	100
70	-	-	-	-	-	10347008	-	100
75	-	-	-	-	-	10347033	-	100
90	-	-	-	-	10313209	-	-	50
90	-	-	-	-	-	10347009	-	100
110	-	-	-	10340810	-	-	-	100
230	-	-	-	-	-	-	10316619	1000

Ordering information

Application specific filters (continuation)

Diameter (mm)	Grade 287 ½	Grade 512 ½	Grade 0790 ½	Grade 2555 ½	Quantity/pack
Folded filters					
110	-	10310643	-	-	100
125	10310244	-	-	-	50
150	10310245	-	-	-	50
150	-	10310645	10301645	-	100
185	10310247	10301647	-	-	50
185	-	10310647	10301647	10313947	100
240	-	-	-	10313951	100
320	-	-	-	10313953	100
Sheets					
1060 mm × 560 mm	. –	-	10390046	-	100

Seed germination testing papers

Seed testing papers are made from pure cellulose without any additives and do not contain any substances which could influence the growth of the seeds. The constant water absorption of the papers ensures the continuous provision of the required amount of water.

The contrast of the color seed testing papers makes evaluation easier, particularly for seeds with fine white rootlets or under artificial light. This makes work easier, improves the results, and saves time. The dyes used have been thoroughly investigated and have no influence on the growth of the seeds.

Seed testing papers are available for both the pleated paper (PP) method and the top of paper (TP) method.

Product selection

Seed germination testing papers

Grade	Description	Nominal thickness (µm)	Nominal weight (g/m²)
PP method			
3014	Pleated strips, white*	0.22	113
3236	Pleated strips, white*	0.22	110
TP method			
597	For Petri dishes or Jacobsen/Copenhagen tanks, white	0.18	85
598	For Petri dishes or Jacobsen/Copenhagen tanks, white	0.32	140
3621	Blotter, light blue	1.44	710
3633	Blotter, light blue	0.65	300
3644	Blotter, blue	1.4	720
3645	Yellow	0.35	165

* 50 double pleats

Applications

Seed germination testing papers

Grade	Description
597, 598	Small seeds (e.g. grasses, flowers)
3014, 3236	Medium-large and coated seeds (e.g. sugar beet, fodder beet, grain, sunflower, rapeseed, mustard)
3014	Particularly sensitive seeds
3645	Seeds with small white rootlets

Seed germination testing papers, pleated strips

Seed germination testing papers

Dimensions (mm)	Grade	Catalog number	Color	Description	Quantity/pack
Circles					
70	597	10311808	-	Circles	100
85	3645	10342555	Yellow	Circles	100
90	597	10311809	-	Circles	100
90	598	10312209	-	Circles	100
90	181	2181-090	White	Circles	100
60	-	1872-060	-	_	-
Sheets					
100 × 100	3645	10342500	-	Sheets	1000
105 × 190	3645	10342596	Yellow	Sheets	1000
110 × 170	3645	10342583	Yellow	Sheets	100
110 × 170	3645	10342594	-	Sheets	1000
115 × 115	3645	10342595		Sheets	1000
140 × 200	3644	10342580	Blue	Sheets	1000
140 × 200	3621	10342579	White	Sheets	1000
280 × 340	3644	10342582	-	Sheets	100
420 × 594	3644	10342581	-	Sheets	50
450 × 690	3645	10342570	Yellow	Sheets	100
Pleated strips					
110 × 20	3014	10344672	White	Double pleated strips, without wrap strips	1000
110 × 20	3014	10344676	White	Double pleated strips, with wrap strips	1000
110 × 20	3236	10345572	Grey	Double pleated strips, without wrap strips	1000
110 × 20	3236	10345576	Grey	Double pleated strips, with wrap strips	1000
110 × 20	3236	10345573	Grey	Double pleated strips	500

Qualitative filter papers, Grade 597

Glass microfiber filters

Whatman glass microfiber filters are manufactured from 100% borosilicate glass and are available with or without binder. These depth filters combine fast flow rates with high loading capacity and the retention of very fine particles, extending into the sub-micron range. Glass microfiber filters can be used at temperatures up to 550°C and are excellent for use in applications involving air filtration and for gravimetric analysis of volatile materials where ignition is involved.

Whatman glass microfiber filters have a fine capillary structure and can absorb significantly larger quantities of water than an equivalent cellulose filter, making them suitable for spot tests and liquid scintillation counting methods. The filters can also be made completely transparent for subsequent microscopic examination.

The particle loading capacity of a filtration system can be greatly increased by using a prefilter. Whatman glass microfiber filters such as GF/B or GF/D are recommended because of the low resistance to fluid flow and high particle loading capacity. Whatman Multigrade GMF 150 is particularly valuable for the prefiltration of larger volumes and solutions that are normally difficult to filter.

Glass microfiber and quartz filters: trace element composition

Typical values (µg/g paper)

	QM-A*	EPM 2000	934-AH	GF/A and GF/C
Arsenic (As)	< 1	< 1	24	5
Beryllium (Be)	< 1	< 1	< 1	< 1
Cobalt (Co)	< 1	1	< 1	< 1
Cadmium (Cd)	< 1	< 1	< 1	< 1
Copper (Cu)	< 1	5	3	< 1
Lead (Pb)	< 1	3	9	5
Manganese (Mn)	2	20	18	6
Mercury (Hg)	< 1	< 1	< 1	< 1
Nickel (Ni)	1	1	3	1
Selenium (Se)	< 3	< 3	< 3	< 3
Silver (Ag)	< 1	< 1	< 1	< 1
Thallium (TI)	< 1	< 1	< 1	< 1

Typical composition based on ICP-MS analysis

* Trace element report can be downloaded from the Cytiva website for each lot of QM-A

Grade EPM 2000 air sampling filter

Standard binder-free glass microfiber filter papers

Grade GF/A (1.6 µm*)

This grade filter paper offers fine particle retention and high flow rate, as well as good loading capacity.

- Used for high-efficiency general purpose laboratory filtration, including water pollution monitoring of effluents, for filtration of water, algae and bacteria cultures, food stuff analyses, protein filtration, and radioimmunoassay of weak ß emitters.
- Recommended for gravimetric determination of airborne particulates, stack sampling, and absorption methods of air pollution monitoring.

Whatman Grade GF/A card-mounted filters are used in static sample and personal air sampler applications. These aerosol sampling and particulate monitoring filters provide high flow rates and minimal sample interference.

Grade GF/B (1.0 µm*)

Three times thicker than GF/A with higher wet strength and significantly increased loading capacity. Combines fine particle retention with good flow rate. Particularly useful where liquid clarification or solids quantification is required for heavily-loaded, fine particulate suspensions. Can be used as a finely retentive membrane prefilter. Used in LSC techniques where high loading capacity is required.

Grade GF/C (1.2 µm*)

Combines fine particle retention with good flow rate. The standard filter in many parts of the world for the collection of suspended solids in potable water and natural and industrial wastes. Fast and efficient clarification of aqueous liquids containing low to medium levels of fine particulates. Widely used for cell harvesting, liquid scintillation counting, and binding assays where more loading capacity is required. Ready-to-use (RTU) formats available for total suspended solids (TSS) and total dissolved solids (TDS). (See page 60).

Grade GF/D (2.7 µm*)

Considerably faster in flow rate and overall filtration speed than cellulose filter papers of similar particle retention. The filter is thick and consequently exhibits a high loading capacity. Designed as a membrane prefilter and available in sizes to fit most holders.

- GF/D will provide good protection for finely retentive membranes.
- Can be used in combination with GF/B to provide very efficient graded prefilter protection for membranes.

Grade GF/F (0.7 µm*)

This high-efficiency filter will retain fine particles down to 0.7 µm. Unlike membrane filters with a comparable retention value, it has a very rapid flow rate and an extremely high loading capacity.

Because of the tight specification of 0.6 μ m-0.8 μ m particle retention and pure borosilicate glass structure, GF/F is the material upon which the EPA Method TCLP 1311 for Toxicity Characteristic Leaching Procedure was developed.

Recommended for nucleic acid binding and purification. Very effective in filtering finely precipitated proteins, GF/F can be used in conjunction with GF/D as a prefilter for the successful clarification of extremely difficult biochemical solutions and fluids, and nucleic acids.

Binder-free glass microfiber filters, Grade GF/F

Grade 934-AH (1.5 µm*)

The fine particle retention of this popular grade is superior for its high retention efficiency at high flow rates and its high loading capacity. This is a smooth surface, high retention borosilicate glass microfiber filter, which has been pre-fired and withstands temperatures over 550°C. Grade 934-AH is used for a wide range of laboratory applications.

- Used for determining total suspended solids in water, removal of turbidity, and filtration of bacterial cultures.
- Recommended for water pollution monitoring, cell harvesting, liquid scintillation counting, and air pollution monitoring.

Ready-to-use (RTU) formats are available for Total Suspended Solid (TSS), Total Dissolved Solids (TDS) and Volatile Suspended Solids (VSS). See page 60.

Grade EPM 2000

EPM 2000 has been selected by the U.S. Environmental Protection Agency (EPA) for use in high volume air sampling equipment that collects atmospheric particulates and aerosols. It is manufactured from 100% pure borosilicate glass of special purity, and pre-fired to enable the detailed chemical analysis of trace pollutants with the minimum of interference or background.

* Particle retention rating at 98% efficiency.

Grade 934-AH filters

Grade EPM 2000 air sampling filter

Technical specifications

Glass microfiber and quartz microfiber filters

Grade	Minimum retention efficiency in air (% @ 0.3 µm)	Typical retention efficiency in air (% @ 0.3 μm)	Typical particle retention in liquid (µm)¹	Nominal air flow (s/100 mL/in²)	Nominal thickness (µm)	Nominal basis weight (g/m²)	Maximum recommended temperature (°C)	Typical water flow rate (mL/min)²
GF/A	≥ 99.85	≥ 99.99	1.6	4.3	260	53	550	143
GF/B	-	-	1.0	12	675	143	550	81
GF/C	-	-	1.2	6.7	260	53	550	105
GF/D	-	-	2.7	2.6	675	121	550	681
GF/F	-	-	0.7	19	420	75	550	41
934-AH	-	-	1.5	3.7	435	64	550	341
EPM 2000	≥ 99.85	≥ 99.99	-	5.6	450	85	550	-

¹ Particle retention rating at 98% efficiency

² Normalized for 9 cm diameter. Measured under gravity for comparative purposes

Binder-free glass microfiber grades

				Catalog numbe	er			Quantity
Dimensions (mm)	Grade GF/A	Grade GF/B	Grade GF/C	Grade GF/D	Grade GF/F	Grade 934-AH	EPM 2000	/pack
Filter circles								
7	-	-	-	1823-007	-	-	-	100
10	-	-	-	1823-010	-	-	-	100
13	1820-8013	-	-	-	-	-	-	100
15	-	-	-	-	1825-015	-	-	100
21	1820-021	1821-021	1822-021	1823-021	1825-021	1827-021	-	100
24	1820-024	1821-024	1822-024	1823-024	1825-024	1827-024	-	100
25	1820-025	1821-025	1822-025	1823-025	1825-025	1827-025	-	100
25	-	-	1822-6580	-	-	-	-	400
28	-	-	-	-	-	1827-028	-	100
30	-	-	-	-	-	1827-030	-	100
32	182082964	-	1822-320	-	-	1827-032	-	100
34	1820900086 ⁴	-	-	-	-	-	-	80
34	1820-10026 ⁴	-	-	-	-	-	-	100
35	-	-	-	1823-035	-	1827-035	-	100
37	1820-037	1821-037	1822-037	-	1825-037	1827-037	-	100
42.5	1820-042	1821-042	1822-042	1823-042	1825-042	1827-042	-	100
47	1820-047	1821-047	1822-047	1823-047	1825-047	1827-047	1882-047	100
50	1820-050	-	1822-050	-	-	-	-	100
55	1820-055	1821-055	1822-055	1823-055	1825-055	1827-055	-	100
60	1820-061 ³	-	-	-	-	-	-	50
60	1820-060	1821-060	-	-	-	-	-	100
70	1820-070	1821-070	1822-070	1823-070	1825-070	1827-070	-	100
81	1820-6537	-	-	-	-	-	-	100
82	-	-	-	-	-	1827-082	-	100
85	-		-	-		1827-085	-	100
90	1820-090	1821-090 ¹	1822-090	1823-090 ¹	1825-090 ¹	1827-090	-	100
100	-	-	1822-100	-	-	-	-	100
100	-	-	1822-9916 ²	-	-	-	-	100
105	-	-	-	-	-	1827-105	-	100
110	1820-110	1821-110 ¹	1822-110	1823-110 ¹	1825-110 ¹	1827-110	-	100
125	1820-125	1821-125 ¹	1822-125	1823-125 ¹	1825-125 ¹	1827-125	-	100
142	-	-	-	1823-142 ¹	1825-142 ¹	-	-	100
150	1820-150	1821-150 ¹	1822-150	1823-150 ¹	1825-150 ¹	1827-150	-	100
185	-	1821-185 ¹	1822-185	-	-	1827-185	-	100
240	1820-240	-	-	-	-	1827-240	-	100
257	_	_	_	1823-257	1825-257	_	_	25
293	-	-	-	-	1825-293	-	-	25
320	-	-	-	-	-	1827-320	-	100

* Particle retention rating at 98% efficiency

25 per box
Individually bagged

³ With reinforced rim

⁴ Filter in holder for personal air samplers

Binder-free glass microfiber grades (continuation)

Catalog number G							_ Quantity	
Dimensions (mm)	Grade GF/A	Grade GF/B	Grade GF/C	Grade GF/D	Grade GF/F	Grade 934-AH	EPM 2000	/pack
Filter sheets								
102 × 254	-	-	1822-849	-	-	-	-	50
460 × 570	-	1821-914	-	-	-	-	-	5
460 × 570	1820-915	1821-915	1822-915	1823-915	1825-915	-	-	25
2" × 12"	-	-	-	-	-	1827-808	-	100
2.25" × 12.25"	-	1821-271	-	-	-	-	-	100
8" × 10"	1820-866	-	1822-866	-	-	1827-866	-	100
8" × 10" (prenumbered)	-	-	-	-	-	-	1882-866	100
12" × 15"	-	-	-	-	-	1827-889	-	100
19" × 28"	-	-	-	-	-	1827-957	-	100
50 mm × 87 mm	1820-10026	-	-	-	-	-	-	100
50 mm × 87 mm	1820900086	-	-	-	-	-	-	80

* Particle retention rating at 98% efficiency

25 per box
Individually bagged

³ With reinforced rim
⁴ Filter in holder for personal air samplers

⁴ Filter in I

Binder-free glass microfiber filter sheets

Multigrade GMF 150

Whatman GMF 150 is a multilayer glass microfiber filter with a coarse top layer meshed with a finer layer. Manufactured from 100% borosilicate glass microfiber, the filter is binder free. It is an excellent prefilter for higher particulate loading capacity with faster flow rates, extending the life of the filter.

Multilayer design delivers greater filtration efficiency

GMF 150 represents a new dimension in separation science leading to faster and more cost-effective filtration. In application, the GMF 150 traps larger particles in the pores or on the surface of the coarse layer while the medium sized particles are caught in the interface meshing. The smaller particles are netted in the interstices of the fine layer.

Multigrade GMF 150 grades filter

Technical specifications

Multigrade GMF 150 grades

Grade	Description	Typical particle retention in liquid (µm)¹	Nominal air flow (s/100 mL/in)	Nominal thickness (µm)	Nominal basis weight (g/m)	Typical water flow rate (mL/min)²	Maximum recommended temperature (°C)
GMF 150 1 µm	Multilayer	> 1	4	730	145	222	550
GMF 150 2 µm	Multilayer	> 2	1.6	750	145	887	550

¹ Particle retention rating at 98% efficiency

² Normalized for 9 cm diameter. Measured under gravity for comparative purposes

Ordering information

Multigrade GMF 150 grades

	Catalog	number	
Diameter (mm)	1 μm	2 µm	Quantity/pack
47	1841-047	1842-047	40
90	-	1842-090	40
90	1841-090	-	20

Whatman acid-treated low metal TCLP filter papers

Toxicity Characteristic Leaching Procedure (TCLP) is an analytical test designed to determine the leaching potential in a landfill for hazardous organic and inorganic contaminants that could potentially migrate into groundwater, threatening drinking water sources.

Used for EPA Method 1311

The Whatman TCLP Filter is manufactured using a binder-free borosilicate glass microfiber with a particle retention rating of 0.6 to $0.8 \,\mu$ m. These acid treated, low metal filters are available in a variety of diameters. The 90 mm filter is required for volatile samples and used with a Zero Headspace Extractor.

The 142 mm filter is typically used with nonvolatile samples in an approved jar.

Technical specifications

Acid treated low metal TCLP filters

Nominal air flow (s/100 mL/in²)	Nominal thickness (µm)	Nominal basis weight (g/m²)	Maximum recommended temperature (°C)	Typical particle retention in liquid (μm)	Typical water flow rate (mL/min)	TCLP testing filters
19	420	75	550	0.7	60	

Ordering information

Acid treated low metal TCLP filters

Diameter (mm)	Catalog number	Quantity/pack
47	1810-047	100
90	1810-090	50
90	5925-090	100
110	1810-110	50
125	1810-125	50
142	1810-142	50
142	5925-142	100
150	1810-150	50

Glass microfiber filter papers with binder

Grade GF 6: inorganic binder

Good retention for very fine particles. This filter is used for:

- water pollution applications
- · removing protein from difficult-to-filter beers
- · determination of chlorophyll and phytoplankton residues
- determination of filterable substances and the residue on ignition (dry weight)
- analysis of aggressive media (e.g. acidic gases)
- scintillation measurements
- · determination of the elemental iron content in the presence of iron oxides

Grade GF 8: inorganic binder

This glass fiber filter is used in the filtration of coarse particles. Frequently used in:

- environmental analysis
- determination of PCB, DDE , DDT, furans and dioxins in the air
- pollution measurements in industrial, urban and populated areas, cement factories, iron and steel industry
- · dust measurements in the workplace
- determination of the dust fraction in technical gases
- testing the effectiveness of dust collecting

Grade GF 9: inorganic binder

Used in similar applications to GF 8.

Grade GF 10: organic binder

This filter with extreme mechanical stability and temperature resistance up to 180°C is used as a weighing aid for infrared weighing and as a roll filter in automatic air filtration units.

Grade GF 92: inorganic binder

This filter is used as a membrane prefilter in applications such as:

- · determination of crop protection agent residues by GC or HPLC
- · cold sludge determination of beer
- soot separation before gas analyzers
- · as roll filters in automatic air filtration units

Grade GF 8 glass microfiber filters with binder

Grade F319-04: organic binder

Cambridge filter pad F319-04 meets the requirements of Standard ISO3308:2012.

Grade HGF61: organic binder

This glass fiber paper has excellent mechanical strength and it can retain < 99% air particulate matter which make it very suitable as a filter tape in continuous air monitoring. The grade is also used as venting filter due to its water-repellent feature.

Grade HGF65: organic binder and inorganic binder

This glass is very similar to HGF61. It can retain > 99% air particulate matter @ 0.3 µm. It is mainly used as filter tape in continuous air monitoring and as venting filter in industrial applications.

Technical specifications

Glass microfiber filter papers with binder

Grade	Nominal air flow (s/100 mL/in²)	Nominal air flow (s/100 mL/1.56 cm²)	Nominal thickness (µm)	Nominal basis weight (g/m²)	Filtration speed	Operating temperature (°C)
GF 6	40	-	350	80	Slow	< 500
GF 8	-	12	350	80	Fast	< 500
GF 9	-	27	350	70	Medium	< 500
GF 10	-	12	350	70	Medium	< 180
GF 92	-	27	350	70	Medium	< 500
HGF61	-	-	285	54	-	-
HGF65	-	-	280	54	-	-
F319-04	-	-	1300	215	-	-

HGF61 glass fiber tape

Glass microfiber filter papers with binder

Catalog number Qu						Quantity			
Dimensions (mm)	GF 6	GF 8	GF 9	GF 10	GF 92	HGF61	HGF65	F319-04	/pack
Filter circles									
25	10370018	-	-	-	-	-	-	-	200
42	-	-	-	-	10421019	-	-	-	200
44	-	-	-	-	-	-	-	97039654	960
47	10370019	10370119	-	10370319	10421026	-	-	-	200
50	10370002	-	10370202	10370302	10421030	-	-	-	200
55	10370003	-	-	-	-	-	-	9703900241	100
70	10370004	-	-	-	-	-	-	-	100
90	10370005	10370105	10370205	10370305	-	-	-	-	100
92						-	-	97039944	100
100	10370020	-	-	10370320	10421043	-	-	-	100
110	10370006	-	10370206	-	-	-	-	-	100
125	10370007	-	-	-	-	-	-	-	100
135	-	-	-	-	10421057	-	-	-	100
142	-	-	-	-	10421060	-	-	-	100
150	10370008	-	-	10370308	-	-	-	-	100
185	10370010	-	-	-	-	-	-	-	100
200	10370011	10370111	-	-	-	-	-	-	100
240	10370012	-	-	-	-	-	-	-	100
Filter sheets									
60 × 90	-	10370172	-	-	-	-	-	-	100
610 × 620	10370050	-	-	-	-	-	-	-	100
Filter reels									
30 mm × 13 m	-	-	-	-	-	-	95039860	-	1
30 mm × 20 m	-	-	-	-	-	1830-6236	-	-	1
30 mm × 100 m	-	-	-	-	-	1830-640	-	-	1
40 mm × 42 m	_	_	_	10370393*	-	_	-	_	1
60 mm × 42 m				10370391*					1
600 mm × 228 m				10370434					1

* Core 28 mm

Quartz fiber filter papers

Grade QM-A

These high-purity quartz (SiO₂) microfiber filters are used for air sampling in acidic gases, stacks, flues, and aerosols, particularly at high temperatures up to 800°C and in PM2.5/PM10 and trace element analysis.

- Due to the low level of alkaline earth metals, artifact products of sulfates and nitrates (from SO₂ and NO₂) are virtually eliminated.
- QM-A, sequentially numbered according to EPA standards, is suitable for most applications.
- Grade QM-A filter papers are pre-fired.

Grade QM-B

QM-B is a thicker quartz fiber filter than QM-A. It has higher loading capacity and is suitable for air sampling.

Grade QM-C

QM-C is made of 100% silica microfiber without any additive or binder. It is pre-ignited and has a temperature resistance up to 1200°C. QM-C has very low trace metals (Cr, Ar, Pb, Cd, Ni, Zn) and it can address critical challenges in heavy metal analysis of air particulate matter and high temperature testing.

Grade QM-H

This is a pure quartz fiber filter with low heavy metal content, which can be used at temperatures over 900°C.

Technical specifications

Quartz fiber filter grades

Grade	Minimum retention efficiency in air (% @ 0.3 µm)	Typical retention efficiency in air (% @ 0.3 μm)	Nominal air flow (s/100 mL/in²)	Nominal thickness (µm)	Nominal basis weight (g/m²)	Maximum recommended temperature (°C)
QM-A	≥ 99.85	≥ 99.99	6.3	475	85	800
QM-B	≥ 99.85	≥ 99.99	12	950	170	800
QM-C	≥ 99.85	≥ 99.99	19	475	85	1200
QM-H	-	≥ 99.97	-	430	85	900

Grade QM-A filter paper circles

Quartz fiber filter grades

Diameter (mm)	QM-A	QM-B	QM-C	QM-H	Quantity/pack
Filter circles					
25	1851-025	-	-	-	100
32	1851-032	-	-	-	100
37	-	-	-	1853-037-50	50
37	1851-037	-	1855-037	-	100
40	-	1852-040	-	-	50
42	-	1852-042	-	-	50
47	-	-	-	1853-047-50	50
47	1851-047	-	1855-047	-	100
50	-	-	-	1853-050-50	50
50	1851-050	-	-	-	100
55	1851-055	-	-		100
82	1851-082	-	1855-082	-	100
85	1851-085	-	-	-	100
90	-	-	-	1853-090-50	50
90	1851-090	-	1855-090	-	100
101.6	1851-101	-	-	-	100
110	1851-110	-	1855-110	-	100
118	1851-118	-	-	-	100
150	-	-	-	1853-150-50	50
150	1851-150	-	1855-150	-	100
Filter sheets					
8" × 10"	1851-8866 (prenumbered)	-	1855-866	-	100
8" × 10"	1851-865	-	1855-865	-	25

Ready-to-use (RTU) glass fiber filters for solids

Solids testing, a key measurement in water quality and wastewater analysis, includes testing for total solids (TS), total dissolved solids (TDS), total suspended solids (TSS) and volatile suspended solids (VSS). It can be challenging for a lab staff to maintain accuracy and daily productivity under time pressure. Whatman RTU filters help lab staff simplify filter preparation steps in solids measurement, streamlining workflows and saving time. The RTU series filters are pretreated (washing, drying/ignition and weighing) to ensure weight loss less than 4% or 0.5 mg, whichever is less. 934-AH RTU filters meet the requirements of SM2540C/D/E, and GF/C RTU filters conform to EN872. The RTU filter family includes an economy range which is washed and dried but not weighed.

934AH RTU tray

Filter preparation workflows

EN872

Standard method 2540

Instruction for pan identification

Reading the barcode with a scanner, the weight of filter and the Pan ID can be automatically loaded into an Microsoft Excel[™] file or a lab management system.

Example of filter weights of a whole box

	Pad ID	Box ID	Weight	Unit
1	B0535335	B2002404	0.4310	G
2	B0535336	B2002404	0.4353	G
3	B0535337	B2002404	0.4311	G
4	B0535338	B2002404	0.4311	G
5	B0535339	B2002404	0.4350	G
6	B0535340	B2002404	0.4295	G
7	B0535341	B2002404	0.4277	G
8	B0535342	B2002404	0.4350	G
9	B0535343	B2002404	0.4365	G
10	B0535344	B2002404	0.4321	G
11	B0535345	B2002404	0.4302	G
12	B0535346	B2002404	0.4381	G

Input Box ID "xxxxxxxx" on cytiva.com/documents/RTU, filter weights of a whole box can be downloaded in a Microsoft Excel file.

Instruction of use 934-AH ready-to-use filter for total suspended solids analysis

- 1. Each pre-treated 934-AH RTU filter comes in an aluminum pan, with the filter weight clearly noted. Open a box and take a 934-AH RTU filter out from the box
- 2. Place the 934-AH RTU filter on a Whatman 3-piece funnel or a funnel of the vacuum filtration apparatus and seal the filter to the funnel by wetting with a small amount of water. Then, filter your sample* and finally, wash the filter with three aliquots of 10 mL reagent grade water.
- 3. Remove the filter, return it to the aluminum weigh pan and dry it to constant weight at 103°C to 105°C. To obtain the weight of total suspended solids, subtract the weight of the filter indicated on the pan label from the final weight. For volatile solids analysis, filter the sample with Whatman 934-AH RTU VSS filter. After the measurement of total suspended solids, ignite the filter at 550°C for 15 min in a muffle furnace. The weight loss is the weight of total suspended volatile solids.

Technical specifications

Ready-to-use glass fiber filters

	GF/C RTU	934-AH RTU for suspended and dissolved solids	934-AH RTU for volatiles	934-AH RTU double weigh
Pre-washed, dried, cooled, and weighed	•	•	•	•
Barcoded aluminum pans to download filter weight	٠	•	٠	•
Box barcoded to download weights of all filters contained	•	•	•	•
Pre-fired at 550°C			٠	
Certified filter mass loss the lesser of 0.5 mg or 4% after Standard Method 2540 parts C, D and E preparatory workflow		•	٠	•
Certified mass loss of less than 0.017 mg/cm ² after EN 872 preparatory workflow	•			
Economy option available (washed and dried without weighing or barcoding)	•	•	•	
Drying and weighing steps repeated and documented twice to conform to process in US EPA Lab Standard Method 2540 parts C and D				•

Ordering information

Ready-to-use (RTU) filters

Catalog number						_		
Diameter (mm)	934-AH RTU	934-AH RTU VSS*	934-AH RTU VSS economy**	GF/C RTU*	GF/C RTU economy***	934-AH RTU double weigh	934-AH RTU economy***	Quantity/pack
35	-	3827-035	4827-035	-	-	-	-	100
42.5	9907-042	3827-042	4827-042	-	-	-	-	100
47	9907-047	3827-047	4827-047	3822-047	2822-047	9927-047#	2827-047**	100
47	9907-9436 [†]	-	-	-	-	-	-	100
55	9907-055	-	-	-	-	-	-	100
70	9907-070	3827-070	4827-070	3822-070	2822-070	9927-070#	-	100
90	9907-090	3827-090	4827-090	3822-090	2822-090	9927-090#		100

Pre-weighed
** Pre-rinsed and ignited

Double weigh
Weigh to 5-digit place

*** Pre-rinsed and dried

62

Filter selection made easy

Use our online Whatman filter selector to find the right filter for your sample and application.

cytiva.com/whatmanfilterselector

Nhatma

c) cytiva

READY TO USE FOR

THE R OF THE R. P. LEWIS CO., LANSING MICH.

I IIIIIIIIIIIIIIIIIIIII

934-AHTH RTU

100 Circles CAT No: 3827-047

cytiva

No: 3827-04

TANK DATA STREET

02 Membrane filters

Whatman membrane filters offer accurately controlled pore size distribution with high strength and flexibility to ensure reproducibility and consistency. Membranes are available in a range of pore sizes and formats, including sterile and autoclave packs and colored and gridded forms for specialized applications.

Quick pick reference chart	66
Capillary (true) pore membranes	67
Cyclopore track-etched membranes	67
Nuclepore track-etched membranes	71
Black track-etched membranes	74
Anopore inorganic membranes	76
Tortuous path (pore) membranes	
Regenerated cellulose membranes	78
Cellulose acetate membranes	79
Cellulose nitrate membranes	81
Mixed cellulose ester membranes	
PTFE membranes	
PM 2.5 air monitoring membranes	
Nylon membranes	
Polyamide membranes	

Quick pick reference chart

Track-etched polycarbonate membranes

We manufacture Whatman track-etched membranes using proprietary technology to produce a precision membrane filter with closely controlled pore size distribution.

These membranes include Cyclopore[™] polycarbonate, Nuclepore[™] polycarbonate, chemotaxis membranes, black polycarbonate, and polycarbonate membranes for cell culture.

Cyclopore polycarbonate membranes

Membranes are produced from a pure polymeric film and give exceptional chemical cleanliness. They are free of contaminants, have low tare weight, minimum water adsorption, and very low levels of nonspecific protein binding.

The polycarbonate membranes are hydrophilic and are available in a choice of diameters and pore sizes.

Features and benefits

- Low affinity for stains provides higher optical contrast, making visibility under a microscope easy.
- True surface capture provides easy examination of samples and short analysis times.
- Totally transparent membranes are available.
- Negligible absorption and adsorption of filtrate; nonhygroscopic.
- Low tare weights.
- No particle shedding provides ultra clean filtrate.
- · Biologically inert.

Typical applications

• Air monitoring

Trace elements (chemicals, radioactivity) and particulate analysis (dust, pollens, and airborne particles)

• Analytical methods

Gravimetric analysis, densitometry, emission spectroscopy, X-ray fluorescence, and infrared analysis

Water analysis

Absorbable organic halides (AOX), direct count of microorganisms, marine biology and dissolved phosphates, nitrates, and ammonia analysis

Blood filtration and cell analysis

Red blood cells (RBC) deformability, leukocyte removal, RBC filtration and plasmapheresis, chemotaxis, cytology, and cell culture

Cyclopore PC polycarbonate membrane filters

Microscope image of the surface area of Cyclopore PC polycarbonate membrane filters

General filtration

Particulate and bacteria removal, cross flow filtration, HPLC sample preparation, and solution filtration

Microscopy

Electron microscopy, epifluorescence microscopy, and direct optical microscopy

Microorganism analysis

Direct total microbial count, harvesting, concentration, fractionation, yeast, molds, Giardia, Legionella, coliform, and canine microfilaria

• Nucleic acid studies

Alkaline elution and DNA fragment fractionation

Oceanographic studies

Transparent polycarbonate membrane filters provide a tool for studying planktonic organisms. These ultra thin transparent membranes are strong yet flexible, allowing for planktonic samples to be filtered and the membranes to be mounted directly onto microscope slides.

• Healthcare

Biosensors—as a barrier offering controlled diffusion for biological reagents and electrochemical detectors *Diagnostic assays*—for flow control, sample preparation, blood separation, and capture of latex microparticles *Cell biology*—for cell culture, chemotaxis, and cytological analyses (e.g. direct staining, isotopic, and fluorescence based assays)

Technical specifications

Cyclopore polycarbonate membranes

Thickness	7–20 μm
Weight	0.7–2.0 mg/cm ²
Maximum service temperature	140°C
Porosity (void volume)	4–20%
Ash weight	0.6 µg/cm ²
Pore density	1 × 10 ⁵ -6 × 10 ⁸ pores/cm ²
Opacity	Translucent
Autoclavable	30 minutes at 121°C
Specific gravity	1.21 g/cm ²
Flammability	Slow burn
Fiber releasing	No
Leachables	Negligible
Biological compatibility	Inert

Cyclopore polycarbonate membrane circles

Diameter (mm)	Pore size (µm)	Catalog number	Description	Quantity/pack
13	0.4	10417701	Polycarbonate	100
25	0.1	7060-2501	Polycarbonate	100
25	0.2	10417606	Polycarbonate	100
25	0.4	10417706	Polycarbonate	100
25	2.0	7060-2511	Polycarbonate	100
25	5.0	7060-2513	Polycarbonate	100
25	5.0	7062-2513	Polycarbonate, clear	100
25	8.0	7060-2514	Polycarbonate	100
25	12.0	10418552	Polycarbonate	100
47	0.1	7060-4701	Polycarbonate	100
47	0.2	10417612	Polycarbonate	100
47	0.4	10417712	Polycarbonate	100
47	1.0	7060-4710	Polycarbonate*	100
47	1.0	7091-4710	Polycarbonate, thin clear	100
47	3.0	7060-4712	Polycarbonate	100
47	5.0	7060-4713	Polycarbonate	100
47	8.0	7060-4714	Polycarbonate	100
47	10.0	10418450	Polycarbonate	100
47	12.0	10418550	Polycarbonate	100

* Transparent also available as Special Clear

Other sizes and formats are available upon request.

Cell culture and chemotaxis applications

Whatman track-etched polycarbonate membranes for cell culture applications

Features and benefits

- For the analysis of cell migration toward a chemical stimulus
- Thin and uniform; cylindrical pores facilitate rapid cell migration
- Reduces incubation time and the need to sterilize
- Offered without the standard wetting agent (PVP-free membranes) for increased cellular adhesion (e.g. neutrophil chemotaxis)

Chemotaxis membranes

Ordering information

Cell culture polycarbonate membrane circles

Diameter (mm)	Pore size (µm)	Catalog number	Surface	Quantity/pack
13	3.0	10418301	Standard	100
13	5.0	10417401	Standard	100
13	5.0	10418101	PVP-free	100
13	8.0	10417501	Standard	100
13	8.0	150446	PVP-free	100
25	2.0	10418806	Standard	100
25	3.0	10418306	Standard	100
25	5.0	10417406	Standard	100
25	8.0	10417506	Standard	100
25 × 80	5.0	155845	PVP-free	100

Nuclepore polycarbonate membranes

Nuclepore track-etched polycarbonate membranes are manufactured from high-quality polycarbonate film and have sharply defined pore sizes, high flow rates, and excellent chemical and thermal resistance. The membranes have a smooth flat surface and exhibit very low levels of extractables.

Features and benefits

- Low protein binding and low extractables, minimizing sample contamination
- · High chemical resistance and good thermal stability for a wide range of samples
- Low, consistent ash and tare weights
- Smooth flat surface for good visibility of particles

Applications

- Epifluorescence microscopy
- Environmental analysis
- Cell biology
- eDNA
- EPA testing
- Fuel testing
- Bioassays
- Parasitology
- Air analysis
- · Water microbiology

Ordering information

Nuclepore polycarbonate membrane circles

Diameter (mm)	Pore size (µm)	Catalog number	Description	Quantity/pack
Filter circles				
13	0.015	110401	Polycarbonate	100
13	0.1	110405	Polycarbonate	100
13	0.2	10417001	Polycarbonate	100
13	0.4	10417101	Polycarbonate	100
13	0.8	10417301	Polycarbonate	100
13	1.0	10418701	Polycarbonate	100

Nuclepore polycarbonate membranes

Nuclepore polycarbonate membrane circles (continuation)

Diameter (mm)	Pore size (µm)	Catalog number	Description	Quantity/pack
13	3.0	10418301	Polycarbonate	100
13	5.0	10417401	Polycarbonate	100
13	8.0	10417501	Polycarbonate	100
13	8.0	150446	Polycarbonate PVP-free*	100
13	10.0	10418401	Polycarbonate	100
13	12.0	10418501	Polycarbonate	100
19	0.03	800307	Polycarbonate	100
19	0.05	800308	Polycarbonate	100
19	0.1	800309	Polycarbonate	100
19	0.2	10417004	Polycarbonate	100
19	0.4	10417104	Polycarbonate	100
19	0.8	10417304	Polycarbonate	100
19	1.0	10418704	Polycarbonate	100
25	0.015	110401	Polycarbonate	100
25	0.03	110405	Polycarbonate	100
25	0.05	10417001	Polycarbonate	100
25	0.08	110604	Polycarbonate	100
25	0.1	110605	Polycarbonate	100
25	0.2	10417006	Polycarbonate	100
25	0.4	10417106	Polycarbonate	100
25	0.6	10417206	Polycarbonate	100
25	0.8	10417306	Polycarbonate	100
25	1.0	10418706	Polycarbonate	100
25	2.0	10418806	Polycarbonate	100
25	3.0	10418306	Polycarbonate	100
25	5.0	10417406	Polycarbonate	100
25	8.0	10417506	Polycarbonate	100
25	10.0	10418406	Polycarbonate	100
25	12.0	10418506	Polycarbonate	100
25	0.4	10418606	Polycarbonate AOX [†]	100
37	0.8	10417309	Polycarbonate	100
47	0.015	111101	Polycarbonate	100
47	0.05	111103	Polycarbonate	100
47	0.08	111104	Polycarbonate	100

* PVP-free—hydrophobic

[†] AOX—suitable for AOX (Absorbable Organic Halogens) analysis
Nuclepore polycarbonate membrane circles (continuation)

Diameter (mm)	Pore size (µm)	Catalog number	Description	Quantity/pack
47	0.1	111105	Polycarbonate	100
47	0.2	10417012	Polycarbonate	100
47	0.4	10417112	Polycarbonate	100
47	0.6	10417212	Polycarbonate	100
47	0.8	10417312	Polycarbonate	100
47	1.0	10418712	Polycarbonate	100
47	2.0	10418812	Polycarbonate	100
47	3.0	10418312	Polycarbonate	100
47	5.0	10417412	Polycarbonate	100
47	8.0	10417512	Polycarbonate	100
47	10.0	10418412	Polycarbonate	100
47	12.0	10418512	Polycarbonate	100
47	0.4	10418612	Polycarbonate AOX [†]	100
50	0.2	10417014	Polycarbonate	100
50	0.4	10417114	Polycarbonate	100
50	5.0	10417414	Polycarbonate	100
50	12.0	10418514	Polycarbonate	100
76	0.05	111503	Polycarbonate	100
90	0.05	111703	Polycarbonate	25
90	0.1	111705	Polycarbonate	25
90	0.2	10417018	Polycarbonate	25
90	0.4	10417118	Polycarbonate	25
90	1.0	10418718	Polycarbonate	25
90	2.0	10418818	Polycarbonate	25
90	3.0	10418318	Polycarbonate	25
142	0.08	112104	Polycarbonate	25
142	0.1	112105	Polycarbonate	25
142	0.2	10417031	Polycarbonate	25
142	1.0	10418731	Polycarbonate	25
293	1.0	10418739	Polycarbonate	25
Filter sheets				
8 × 10″	0.03	113502	Polycarbonate	25
8 × 10″	0.2	10417050	Polycarbonate	25
19 × 42 mm	5.0	10417451	Polycarbonate	100

[†] AOX—suitable for AOX (Absorbable Organic Halogens) analysis

Other sizes and formats are available upon request.

Cyclopore black polycarbonate membranes

Black Cyclopore membranes are excellent for epifluorescence and other microscopy applications requiring a contrasting background. The polycarbonate membrane is used to filter the sample and is then used directly for analysis. The dark membrane gives lower background fluorescence and improves the sensitivity of the test.

Technical specifications

Thickness	7—20 µm	
Weight	0.7–2.0 mg/cm ²	
Maximum service temperature	140°C	
Porosity (void volume)	13%	
Ash weight	20.6 µg/cm ²	
Pore density	1 × 10 ⁵ —6 × 10 ⁸ pores/cm ²	
Autoclavable	30 minutes at 121°C	
Flammability	Slow burn	
Fiber releasing	No	
Leachables	Negligible	
Biological compatibility	Inert	

Yeast cells on Black Cyclopore with DAPI Stain

Ordering information

Cyclopore black polycarbonate membranes

Cyclopore black polycarbonate membranes

Diameter (mm)	Pore size (µm)	Catalog number	Description	Quantity/pack
25	0.2	7063-2502	Polycarbonate	100
25	0.4	7063-2504	Polycarbonate	100
47	0.2	7063-4702	Polycarbonate	100

Cyclopore PC black polycarbonate membrane filters

Other sizes and formats are available upon request.

Nuclepore black polycarbonate membranes

Membranes for use with epifluorescence microscopy

Nuclepore black dyed polycarbonate membranes are high performance membranes suited for applications using epifluorescence microscopy. Black membranes greatly reduce background fluorescence, which results in improved microorganism and particulate visibility.

Using these membranes in combination with epifluorescence techniques, rapid enumeration of viable and nonviable microorganisms and particulate matter can be conducted in 30 minutes or less. Conventional culturing methods require incubation times of more than 24 hours. Use black track-etched membranes with epifluorescence techniques to achieve rapid, direct enumeration of microorganisms.

Nuclepore black polycarbonate membranes

Features and benefits

Applications

- Polycarbonate track-etched membrane dyed black
 with Irgalan
- Flat, smooth surface to assure surface capture of microorganisms and particles
- Extremely low nonspecific absorption

- Potable water
- Ultra pure water
- Food and dairy
- Wine and beverages
- Clinical
- Electronics

Technical specifications

Nuclepore black polycarbonate membrane circles

Thickness	7–22 μm
Rated pore size	0.015 μm—15 μm
Rated pore density	1 × 10⁵—6 × 10⁵ pores/cm
Surface texture	Flat and smooth
Opacity	Translucent
Hydrophobic/hydrophilic	Both
Fiber releasing	No

Ordering information

Nuclepore black polycarbonate membrane circles

Diameter (mm)	Pore size (µm)	Catalog number	Description	Quantity/pack
25	0.2	110656	Polycarbonate	100
25	0.4	110657	Polycarbonate	100
25	0.8	110659	Polycarbonate	100
47	0.2	111156	Polycarbonate	100

Other sizes and formats are available upon request.

Anopore inorganic membranes

The Anopore[™] inorganic membrane (Anodisc[™]) is an excellent choice for a wide range of laboratory filtration applications. This material has a precise, nondeformable honeycomb pore structure with no lateral crossover between individual pores. Anopore membranes filter at precisely the stated cut-off, allowing no larger sized particles to pass through the membrane. Composed of a high-purity alumina matrix that is manufactured electrochemically, the membrane exhibits low protein binding, has minimal autofluorescence, is nontoxic, and supports cellular growth.

The precise pore structure and narrow pore size distribution of the Anopore membrane ensure a high level of particle removal efficiency. Microorganisms and particulate material are captured on the surface of the membrane for subsequent analysis by light or electron microscopy. When wet, the membrane is virtually transparent, so retained particles do not need to be transferred to another surface before microscopic examination.

The membrane is hydrophilic and is compatible with most solvents and aqueous material. No monomers, plasticizers, adhesives, surfactants or wetting agents are used in the manufacturing process, which removes sample contamination and ensures low protein binding and minimal loss of sample.

The Anopore membrane is supplied in the form of Anodisc membrane filters. Select from unsupported or peripherally bonded to an annular polypropylene ring for ease of handling (except the 13 mm diameter disc). Anopore membranes are suitable for both vacuum and pressure filtration.

Anopore is available in three nominal pore sizes: 0.02 µm, 0.1 µm and 0.2 µm, and in three diameters: 13 mm, 25 mm and 47 mm.

Features and benefits

- High pore density and narrow pore size distribution make it an extremely precise membrane.
- Wide solvent compatibility reduces the need to stock a variety of membranes in the laboratory.
- Minimized use of additives in the manufacturing process ensures minimal extractables and no sample contamination.
- Extremely low protein binding minimizes sample loss.
- Virtually transparent when wet, making it suitable for microscopy studies.

Applications

- HPLC mobile phase filtration and degassing
- Ultra cleaning of solvents
- Gravimetric analysis
- Liposome extrusion
- Scanning electron microscopy studies
- · Bacterial analysis by epifluorescence light microscopy
- Micrometer and nanometer filtration
- Metal nanorods formation

Anodisc circle with support ring

Anopore inorganic membranes without support ring

Membrane filters – Inorganic membranes

Anodisc pore structure

Technical specifications

Anopore inorganic membranes

	Anodisc 13	Anodisc 25	Anodisc 47
Average membrane thickness	60 µm	60 µm	60 μm
Membrane diameter	13 mm	21 mm	43 mm
Membrane type	Anopore aluminum oxide	Anopore aluminum oxide	Anopore aluminum oxide
Support ring material	None	Polypropylene	Polypropylene
Construction process	N/A	Thermal weld	Thermal weld
Protein adsorption	Low	Low	Low
pH range	3.5–9.5	3.5–9.5	3.5–9.5
Maximum service temperature*	400°C*, unsupported	40°C, supported	40°C, supported; 400°C, unsupported
Porosity	25-50%	25-50%	25-50%
Autoclavable	Yes	No	Yes, unsupported
Refractive index	1.6	1.6	1.6

* Polypropylene support ring limits maximum service temperature to 40°C. Supported Anodisc not autoclavable.

Ordering information

Anopore inorganic membrane circles

Diameter (mm)	Membrane	Pore size (µm)	Catalog number	Hydrophilic	Protein binding	Solvent resistance	Quantity/ pack
13	Anodisc 13*	0.02	6809-7003	Yes	Low	Very good	100
13	Anodisc 13*	0.1	6809-7013	Yes	Low	Very good	100
13	Anodisc 13*	0.2	6809-7023	Yes	Low	Very good	100
25	Anodisc 25	0.02	6809-6002	Yes	Low	Very good	50
25	Anodisc 25	0.1	6809-6012	Yes	Low	Very good	50
25	Anodisc 25	0.2	6809-6022	Yes	Low	Very good	50
47	Anodisc 47*	0.02	6809-5502	Yes	Low	Very good	50
47	Anodisc 47	0.02	6809-5002	Yes	Low	Very good	50
47	Anodisc 47	0.1	6809-5012	Yes	Low	Very good	50
47	Anodisc 47*	0.2	6809-5522	Yes	Low	Very good	50
47	Anodisc 47	0.2	6809-5022	Yes	Low	Very good	50

* Without support ring

Cellulosic membranes

Regenerated cellulose membranes

Whatman regenerated cellulose membranes are made of pure cellulose without wetting agents to provide a membrane with broad chemical compatibility that can be use with aqueous solutions or organic solvents. Combined with low extractable and low binding characteristics, regenerated cellulose membranes are well-suited for sample preparation and mobile filtration for HPLC applications and as well as proteinaceous solutions.

Features and benefits

- · Spontaneously wetting, very good wet strength
- Extremely chemically resistant; suitable for aqueous and organic solutions
- Hydrophilic
- · Mechanically stable with low protein binding
- Sterilizable by all common methods
- · Low extractable levels to minimize sample contamination

Technical specifications

Regenerated cellulose membranes

Membrane type	Pore size (μm)	Thickness (μm)	Water flow rate Δp = 0.9 bar (s/100 mL/12.5 cm²)	Air flow rate Δp = 3 mbar (s/100 mL)	Bubble point (bar)
RC 58	0.2	75	14	-	3.7
RC 55	0.45	75	26	-	3.5
RC 60	1.0	70	3	12.5	0.8

Regenerated cellulose membrane filter circles

Regenerated cellulose membrane circles

Dimensions (mm)	Membrane type	Pore size (µm)	Catalog number	Quantity/pack
Filter circles				
25	RC 55	0.45	10410206	100
47	RC 55	0.45	10410212	100
50	RC 55	0.45	10410214	100
100	RC 55	0.45	10410219	25
110	RC 55	0.45	10410224	25
142	RC 55	0.45	10410229	25
47	RC 58	0.2	10410312	100
50	RC 58	0.2	10410314	100
100	RC 58	0.2	10410319	25
47	RC 60	1	10410012	100
50	RC 60	1	10410014	100
Filter sheets				
300 × 600	RC 58	0.2	10410380	5

Cellulose acetate membranes

Whatman cellulose acetate membranes, made from pure cellulose acetate, are suitable for biological and clinical analysis, sterility tests, and scintillation measurements.

Cellulose acetate membrane filters exhibit very low protein binding capacity. They are hydrophilic, therefore suitable for aqueous and alcoholic media. The cellulose acetate membranes have improved solvent resistance, particularly to low molecular weight alcohols, and increased heat resistance. With high physical strength, the membrane filters can be used up to 180°C, are suitable for hot gases, and can be sterilized by all methods without sacrificing the integrity of the membrane.

Cellulose acetate membrane (Type ST 68, 0.8 µm)

Technical specifications

Cellulose acetate membranes

Membrane type	Pore size (µm)	Thickness (μm)	Water flow rate Δp = 0.9 bar (s/100 mL/12.5 cm²)	Bubble point (psi)	Bubble point (bar)
OE 66	0.2	115	26	58	4
OE 67	0.45	115	12	45	3.1
ST 68	0.8	140	16	21.7	1.5
ST 69	1.2	140	12	13	0.9

Ordering information

Cellulose acetate membranes

Dimensions (mm)	Membranetype	Pore size (µm)	Catalog number	Quantity/pack
Filter circles				
25	OE 66	0.2	10404106	100
47	OE 66	0.2	10404112	100
47	OE 66	0.2	10404170*	100
50	OE 66	0.2	10404114	100
110	OE 66	0.2	10404126	50
142	OE 66	0.2	10404131	25
293	OE 66	0.2	10404139	25
13	OE 67	0.45	10404001	100
25	OE 67	0.45	10404006	100
47	OE 67	0.45	10404012	100
50	OE 67	0.45	10404014	100
85	OE 67	0.45	10404044	50
110	OE 67	0.45	10404026	50
142	OE 67	0.45	10404031	25
47	ST 68	0.8	10403112	100
47	ST 69	1.2	10403012	100
Filter sheets				
300 × 600	OE 66	0.2	10404180	5

* Sterile

Cellulose nitrate membranes

Recommended for most routine applications, this membrane is manufactured under strictly controlled conditions. Whatman cellulose nitrate membrane filters provide a very narrow pore size distribution, high flow rate and low levels of extractables.

Higher strength and flexibility

Most membranes are inherently brittle and difficult to handle; it is not uncommon for filters to be damaged during loading into holders or while in use. Whatman cellulose nitrate membrane filters have improved flexibility and are made to tolerate rough handling, loading and autoclaving without sacrificing integrity. These membranes are among the strongest of their type available, as measured and compared by burst pressure tests.

Low extractable levels

The level of extractables in membrane filters has become more important with advances in filtration and adsorption techniques. In particular, pharmaceutical, immunological and biomedical tissue culture and trace analysis applications can be adversely affected by high extractable levels. Whatman cellulose nitrate membrane filters have a low level of extractables, generally below that of other membranes of a similar type.

Narrow pore size distribution

One of the major features of Whatman membrane filters is the narrow distribution of pore sizes. The rated pore size of these membranes is closely managed due to our advanced manufacturing and control system. Additionally, the batch-to-batch variation is minimized, providing more consistent laboratory results.

Increased temperature stability

Membrane filters are normally autoclaved at 121°C without loss of integrity. Cellulose nitrate membranes are supplied as circles, sheets, or reels.

Reduced shrinkage

Whatman membranes exhibit a low shrinkage during autoclaving. Excessive shrinkage can cause problems during autoclaving and is often the cause of membranes tearing in their holders after autoclaving. It may also cause a reduction in flow rate and total throughput.

Features and benefits

- Narrow pore size distribution for improved surface capture and analysis
- Low levels of extractables to ensure sample integrity

Applications

- Sample preparation
- Microbiological studies
- Filtration of aqueous solutions

Cellulose acetate membrane (Type ST 68, 0.8 $\mu m)$

Filter types

White plain filters

This is the standard membrane filter for the majority of laboratory applications involving particles and cells in the range of $0.1 \,\mu\text{m}$ to $12.0 \,\mu\text{m}$. The residue after filtration is found to be almost completely on the surface of the membrane and allows physical recovery of deposits and microscopic examination.

Gridded filters

Gridded filters make it easier to count particles, microorganisms and colonies. If a gridded membrane is required, please see mixed cellulose ester membranes.

Technical specifications

Cellulose nitrate membraness

Thickness	105–140 µm
Weight	3.6-5.5 mg/cm ²
Maximum service temperature	80°C
Porosity	66-84%
Steam autoclavable	Yes
Hydrophilic	Yes

Typical applications

Cellulose nitrate membraness

Field of application	Pore size (µm)
General	
Microfiltration	0.1
Ultracleaning	0.1
Sterilizing*	0.2
Bulk bacterial removal	0.45
Analytical precipitates	0.65
Clarifying filtration	1.0
Particle removal	5.0

* Refers to sterilization by filtration for small sample use which is an industry term for filters of pore size 0.2 µm or smaller as referenced in guidance such as EPA Guidance for Industry Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice Section IX, Part B (September 2004).

Typical applications

Cellulose nitrate membraness (continuation)

Field of application	Pore size (µm)
Water microbiology and analysis	
Bacterial colony count	0.45 (gridded)—see mixed cellulose ester membranes
Sediment analysis	0.45
Suspended particles	5.0
Air pollution monitoring	
Asbestos monitoring (NIOSH)	0.8
Food and beverage QC	
E. coli and coliforms	0.45 (gridded)—see mixed cellulose ester membranes
Total bacteria count	0.2 (gridded)—see mixed cellulose ester membranes
Tissue culture	
Mycoplasma removal	0.1
Sterile* filtration	0.2

* Refers to sterilization by filtration for small sample use which is an industry term for filters of pore size 0.2 µm or smaller as referenced in guidance such as EPA Guidance for Industry Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice Section IX, Part B (September 2004).

Ordering information

Cellulose acetate membranes

Dimensions (mm)	Pore size (µm)	Catalog number	Description	Quantity/pack
Filter circles				
13	0.2	7182-001	Plain (white)	100
13	0.45	7184-001	Plain (white)	100
25	0.1	7181-002	Plain (white)	100
25	0.2	7182-002	Plain (white)	100
25	0.45	10401106	Plain (white)	100
25	0.45	7184-002	Plain (white)	100
25	0.8	7188-002	Plain (white)	100
25	1.0	7190-002	Plain (white)	100
25	3.0	7193-002	Plain (white)	100
25	5.0	7195-002	Plain (white)	100
25	5.0	10400206	Plain (white)	100
25	8.0	10400106	Plain (white)	100
37	0.8	7188-003	Plain (white)	100
47	0.1	7181-004	Plain (white)	100

Cellulose acetate membranes (continuation)

Dimensions (mm)	Pore size (µm)	Catalog number	Description	Quantity/pack
47	0.1	10402012	Plain (white)	100
47	0.2	7182-004	Plain (white)	100
47	0.2	10401312	Plain (white)	100
47	0.2	10401320	Plain (white)	50
47	0.45	7184-004	Plain (white)	100
47	0.45	10401170	Plain (white), sterile	100
47	0.45	10401112	Plain (white)	100
47	0.65	7186-004	Plain (white)	100
47	0.8	7188-004	Plain (white)	100
47	1.0	7190-004	Plain (white)	100
47	3.0	7193-004	Plain (white)	100
47	5.0	7195-004	Plain (white)	100
47	5.0	10400212	Plain (white)	100
47	8.0	10400112	Plain (white)	100
47	12.0	10400012	Plain (white)	100
50	0.1	10402014	Plain (white)	100
50	0.2	10401314	Plain (white)	100
50	0.45	10401114	Plain (white)	100
50	0.45	7184-005	Plain (white)	100
50	1.2	7191-005	Plain (white)	100
50	5.0	10400214	Plain (white)	100
50	8.0	10400114	Plain (white)	100
50	8.0	10405079	Plain (white), with hydrophobic rim	100
50	12.0	10400014	Plain (white)	100
85	0.45	10401122	Plain (white)	50
90	0.2	7182-009	Plain (white)	25
90	0.45	10401118	Plain (white)	50
90	0.45	7184-009	Plain (white)	25
90	0.8	7188-009	Plain (white)	25
90	5.0	7195-009	Plain (white)	25
100	0.45	10401121	Plain (white)	50
110	0.45	10401126	Plain (white)	50
142	0.2	7182-014	Plain (white)	25
142	0.45	7184-014	Plain (white)	25
142	0.45	10401131	Plain (white)	25
142	1.2	7191-014	Plain (white)	25

Mixed cellulose ester membranes

Whatman mixed cellulose ester membranes are composed of cellulose acetate and cellulose nitrate. They characteristically have a smoother, more uniform surface than pure nitrocellulose filters, and the cellulose acetate in the composition provides better characteristics for handling with forceps or placing into filter funnels. Mixed cellulose ester membranes are well-suited for particle counting, microbiological examination, and environmental monitoring applications.

Eased counting process

When counting microbial colonies, particulate or fibers, select a colored membrane to provide a good contrasting background.

Plain or gridded

Whatman mixed cellulose ester membrane is available in a variety of diameters and colors, plain or with gridlines. Many microbiological techniques use gridlines to assist in keeping track while counting colonies, or as a way to estimate total counts. Whatman grid lines use a nontoxic ink in a unique broken pattern designed to neither inhibit nor enhance colony growth. Select plain membrane for most other environmental methods that require no gridlines or rely on the graticule in the microscope eyepiece.

Sterile filters

Mixed cellulose ester membranes are available in non-sterile and sterile packaging. Choose from individual sealed discs of membrane or dispenser pack compatible with the eButler Membrane Dispenser.

Features and benefits

- Sterile options available for microbiology or critical applications.
- · Color selection provides excellent contrast for easier colony or particulate counting.
- · Grid lines are nontoxic and do not inhibit bacterial growth, ensuring sample integrity.
- · Biologically inert with good thermal stability.
- Microporous structure of membrane gives high flow rates and high particulate-loading capacity.

Applications

The membrane is particularly effective in applications requiring higher flow rates and larger volume filtration, including clarification or sterilization* of aqueous solutions, particulate analysis and removal, air monitoring and microbial analysis. Other applications include:

- Cytology
- HPLC samples (aqueous)
- Biological assays
- Food microbiology, including enumeration of E. coli in foods
- Bacteriological studies
- · Particle counting from liquids and aerosols
- Yeasts and molds

* Refers to sterilization by filtration for small sample use which is an industry term for filters of pore size 0.2 µm or smaller as referenced in guidance such as EPA Guidance for Industry Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice Section IX, Part B (September 2004).

Mixed cellulose ester membrane

MembraClear

The MembraClear PCM filter is designed for asbestos sampling for examination by phase contrast microscopy. Asbestos sampling isolates these fibers from circulating air to determine concentrations.

Technical specifications

Mixed cellulose ester membranes

Burst strength	> 10 psi
Weight	4.3-5.0 mg/cm ²
Maximum service temperature	130°C
Porosity	74–77%
Steam autoclavable	Yes
Solvent resistance	Medium
Protein binding	Medium

Product selection

Mixed cellulose ester membranes

Membrane type	Pore size (µm)	Thickness (μm)	Water flow rate Δp = 0.9 bar (s/100 mL/12.5 cm²)	Air flow rate Δp = 3 mbar (s/100 mL)	Bubble point (psi)	Bubble point (bar)
ME product range						
ME 24	0.2	135	20	-	53.6	3.7
ME 25	0.45	145	12.5	-	40.6	2.8
ME 26	0.6	135	48	21	27.6	1.9
ME 27	0.8	140	2.8	11.6	18.8	1.3
ME 28	1.2	140	2	9.3	11.6	0.8
ME 29	3	150	1.2	6.7	10.2	0.7

Cellulose acetate membranes

Diameter (mm)	Pore size (µm)	Catalog number	Description	Quantity/pack
ME range—ME 24, plair	n			
25	0.2	10401706	Plain	100
47	0.2	10401712	Plain	100
47	0.2	10401770	Plain	100
50	0.2	10401714	Plain	100
50	0.2	10401772	Plain, sterile	100
100	0.2	10401721	Plain	50
110	0.2	10401726	Plain	50
142	0.2	10401731	Plain	25
ME range—ME 25, plair	ı			
25	0.45	10401606	Plain	100
47	0.45	10401612	Plain	100
47	0.45	10401670	Plain	100
50	0.45	10401614	Plain	100
50	0.45	10401672	Plain	100
50	0.45	10401664	Plain, low C	100
90	0.45	10401618	Plain	50
100	0.45	10401621	Plain	50
110	0.45	10401626	Plain	50
142	0.45	10401631	Plain	25
ME range—ME 26, plair	1			
25	0.6	10401506	Plain	100
47	0.6	10401512	Plain	100
50	0.6	10401514	Plain	100
ME range—ME 27, plain	1			
25	0.8	10400906	Plain	100
37	0.8	10400909	Plain	100
47	0.8	10400912	Plain	100
50	0.8	10400914	Plain	100
100	0.8	10400921	Plain	50
64				
ME range—ME 28, plair	n			
25	1.2	10400806	Plain	100
47	1.2	10400812	Plain	100
50	1.2	10400814	Plain	100
100	1.2	10400821	Plain	50

Cellulose acetate membranes (continuation)

Diameter (mm)	Pore size (µm)	Catalog number	Description	Quantity/pack
ME range—ME 29, plain				
25	3	10400706	Plain	100
47	3	10400712	Plain	100
50	3	10400714	Plain	100
50	3	10400772	Plain, sterile	100
ME range—ME 24, gridded				
47	0.2	10406970	White/black grid 3.1 mm, sterile	100
47	0.2	10408712	White/black grid 3.1 mm, sterile, for Membrane-Butler	400
50	0.2	10406972	White/black grid 3.1 mm, sterile	100
50	0.2	10408714	White/black grid 3.1 mm, sterile, for Membrane-Butler	400
ME range—ME 25, gridded				
47	0.45	10406812	White/black grid 3.1 mm	100
47	0.45	10407970	White/black grid 3.1 mm, sterile	100
47	0.45	10406871	White/black grid 3.1 mm, sterile	1000
47	0.45	10406512	White/black grid 5 mm	100
47	0.45	10409770	Black/white grid 3.1 mm, sterile	100
47	0.45	10409771	Black/white grid 3.1 mm, sterile	1000
47	0.45	10409414	Green/black grid 3.1 mm	1000
50	0.45	10406814	White/black grid 3.1 mm	100
50	0.45	10406572	White/black grid 5 mm, sterile	100
50	0.45	10409714	Black/white grid 3.1 mm	100
50	0.45	10409772	Black/white grid 3.1 mm, sterile	100
ME range—ME 25 Select, gri	dded			
47	0.45	10406800	White/black grid 3.1 mm, sterile, single packed	100
47	0.45	10406803	White/black grid 3.1 mm, sterile, for Membrane-Butler	400
50	0.45	10406801	White/black grid 3.1 mm, sterile, single packed	100
50	0.45	10406802	White/black grid 3.1 mm, sterile, for Membrane-Butler	400
ME range—ME 26, gridded				
50	0.6	10409814	Black/white grid 3.1 mm	100
ME range—ME 27, gridded				
47	0.8	10408970	White/black grid 3.1 mm, sterile	100
47	0.8	10409970	White/black grid 3.1 mm with pad, sterile	100
50	0.8	10405672	Green/black grid 3.1 mm, sterile	100
ME range—ME 28, gridded				
50	1.2	10408472	Green/black grid 3.1 mm, sterile	100
MembraClear				
25	_	7141-025	Plain	100
47	-	7141-047	Plain	100

PTFE membranes

Whatman Polytetrafluoroethylene (PTFE) membranes are chemically stable and inert. They are suitable for applications involving aggressive organic solvents, strong acids and alkalis. PTFE membranes are particularly suitable for preparing samples for HPLC analysis. This hydrophobic membrane is laminated onto a nonwoven polypropylene support web, providing strength and handling, making it an excellent choice for venting culture vessels or delivering filtered air or gas to instrumentation. Thermal stability allows filtration or environmental sampling up to 120°C.

Chemically stable and inert

PTFE is the membrane of choice for use with aggressive solvents, liquids, and gases that can attack other membranes. It is resistant to most acids, alkalis, and solvents.

Applications

One of the major applications for the PTFE membrane is the clarification of corrosives, solvents, and aggressive fluids. With excellent chemical compatibility and low extractables, PTFE membrane is a good choice for HPLC mobile phase or sample filtration where any solid particles can cause permanent damage to the column. PTFE membrane is often used for venting, filtration of air or gas, or pump protection. Choose 1.0 and 5.0 µm pore sizes for better air flow in systems with less risk of direct fluid interface. Select 0.2 or 0.45 µm for applications where aerosol and direct fluid contact are possible, such as between fluid traps and pumps or house vacuum. For critical applications where sterile1 venting is required, choose 0.2µm pore size.

WTP and TE membrane ranges

WTP membranes use a polypropylene grid as the support material whereas the TE range uses a randomly arranged polypropylene support material.

Technical specifications

PTFE membranes

Membrane type	Nominal thickness (µm)	Porosity (%)	Liquid flow rate Δp = 0.9 bar (s/100 mL/12.5 cm²)	Liquid flow rate @ 10 psi vacuum (mL/min/cm²)	Air flow rate Δp = 3 mbar (s/100 mL)	Air flow rate @ 10 psi vacuum (L/min/cm²)	Bubble point (psi)	Bubble point (bar†)	Max. temp. (°C)
TE range									
0.2 µm (TE 35)	240	-	24*	-	70	-	19	1.31	100
0.45 µm (TE 36)	220	-	12*	-	60	-	10.9	0.75	100
1.0 µm (TE 37)	275	-	5.4*	-	24	-	5.9	0.41	100
5.0 µm (TE 38)	265	-	2.2*	-	3.5	-	1	0.07	100
WTP range									
0.2 µm	130	72	-	61.4**	-	4.5	14.1	0.97	120
0.5 µm	120	74	-	110**	-	7.5	8.5	0.59	120
1.0 µm	90	76	-	445**	-	17	4.3	0.3	120

* Measured with ethanol

** Measured with acetone
 [†] Measured using 2-propanol

[#] Refers to sterilization by filtration for small sample use which is an industry term for filters of pore size 0.2 μm or smaller as referenced in guidance such as EPA Guidance for Industry Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice Section IX, Part B (September 2004).

PTFE Membrane Filters—TE Range

PTFE membrane circles

Diameter (mm)	Pore size (µm)	Catalog number	Quantity/pack
WTP range			
25	0.2	7582-002	100
25	1.0	7590-002	100
47	0.2	7582-004	100
47	0.5	7585-004	100
47	1.0	7590-004	100
TE range—TE 35			
25	0.2	10411405	50
47	0.2	10411411	50
50	0.2	10411413	50
TE range—TE 36			
25	0.45	10411305	50
47	0.45	10411311	50
50	0.45	10411313	50
TE range—TE 37			
25	1.0	10411205	50
47	1.0	10411211	50
50	1.0	10411213	50
TE range—TE 38			
37	5.0	10411108	50
47	5.0	10411111	50
50	5.0	10411113	50
90	5.0	10411116	25
150	5.0	10411130	25

PM 2.5 air monitoring membrane

A high-purity, thin PTFE membrane in a sequentially numbered, chemically resistant polypropylene support ring for PM 2.5 ambient air monitoring. Whatman PM 2.5 membranes have low tare mass for accurate gravimetric determinations.

The PM 2.5 PTFE membranes are manufactured under clean room conditions. These chemically resistant, low chemical background filters permit sensitive, interference-free determinations. No glues or adhesives are used in making these products.

Statement of conformance

PTFE Filters for EPA PM 2.5 Reference Method. Under the requirements of 40 U.S. Code of Federal Regulations (CFR) Part 50, Appendix L, shown below, the manufacturer must perform the following tests as listed.

Any filter manufacturer or vendor who sells or offers to sell filters specifically identified for use with this PM 2.5 reference method shall certify that the required number of filters from each lot (0.1% or 10, whichever is greater) offered for sale have been tested as specified and meet 90% of each of the design and performance specifications:

- · Loose, surface particle contamination (drop test-weight loss stability)
- Temperature stability (temperature—weight loss stability)

Any filter manufacturer or vendor who sells or offers to sell filters specifically identified for use with this PM 2.5 reference method shall certify that a minimum number of 50 filters from each lot of filters offered for sale have been tested as specified for the following tests and meet 90% of each of the design and performance specifications:

- Filter type
- Filter diameter
- Filter thickness
- Filter pore size
- · Support ring width
- Support ring thickness (total)
- Maximum pressure drop (clean filter)
- Maximum moisture pickup
- Collection efficiency
- Alkalinity
- · Special requirements

These include trace metal analysis by X-ray flourescence (XRF) and visual inspection for defects such as pinholes, support ring separation, chaff or flashing, loose material, discoloration, filter nonuniformity or any other obvious filter defect.

Every manufactured lot that is offered for sale, and is identified for use with the PM 2.5 reference method, conforms to EPA acceptance criteria.

PM 2.5 Air Monitoring Membrane Filters

Technical specifications

PTFE filters for use in US EPA PM 2.5 ambient air monitoring

Property	Test method	Unit of measure	Value	Range
Filter media	N/A	N/A	PTFE	-
Filter thickness	-	μm	40	± 10
Filter diameter	Template	mm	46.2	± 0.25
Filter pore size	ASTM f 316-94	μm	2.0	Maximum
Support ring media	N/A	N/A	Polypropylene	-
Total support ring thickness	-	mm	0.38	± 0.04
Support ring width	Template	mm	3.68	± 0.00—0.51
Particle retention (0.3 µm)	ASTM D 2986-95a	%	99.7	Minimum
Pressure drop (0.3 µm) @ 16.67 L/min	ASTM D 2986-95a	cm water	30	Maximum
Alkalinity	Section 2.12 EPA/600/R-94/038b	µeq/g of filter	< 25	Maximum
Temperature weight loss stability	As above	hð	< 20	Maximum
Drop test weight loss stability	As above	hð	< 20	Maximum
Moisture weight gain stability	As above	μg	< 10	Maximum

Maximum trace element concentration by X-ray fluorescence

lon	ng/cm²	lon	ng/cm²	ion	ng/cm²	lon	ng/cm²	lon	ng/cm²	lon	ng/cm²
AI	94.4	Sc	7.2	Ni	3.0	Br	2.0	Pd	9.6	Cs	25
Si	32.8	ti	13.8	Cu	2.8	Rb	2.0	Ag	9.6	Ва	32.2
Р	22.6	V	4.8	Zn	2.2	Sr	2.2	Cd	10.8	La	87.6
S	13.4	Cr	2.2	Ga	1.8	Y	14.6	Sn	15.2	W	5
CI	9.4	Mn	2.2	Ge	3.0	Zr	13.2	Sb	14.4	Au	4.4
К	5.6	Fe	5.8	As	2.8	Мо	11.6	Te	16.2	Hg	4.4
Ca	8.2	Со	4.0	Se	1.6	Rh	9.4	I	18.6	Pb	4.8

Ordering information

PM 2.5 air monitoring membrane circles

Diameter (mm)	Catalog number	Description	Quantity/pack
46.2	7592-104	With support ring, sequentially numbered	50

Nylon membranes

High-quality nylon membranes are suitable for filtering aqueous solutions and most organic solvents. The membranes are suitable for use with a wide range of biological preparations and can be used where other membranes are unsuitable or difficult to use.

Nylon membranes are hydrophilic, eliminating the need for wetting agents that could be extracted when filtering aqueous solutions. The membranes are flexible, durable and tear resistant, and can be autoclaved at 135°C.

Applications

Nylon membrane circles

- Filtration of aqueous and organic mobile phases
- Vacuum degassing
- · Filtration of tissue culture media, microbiological media, buffers, and solutions

Technical specifications

Nylon membranes

Pore size (µm)	Thickness (µm)	Fiber releasing	Water flow rate @ 5 psi	Bubble point (psi)	Maximum temperature (°C)
0.2	150—187	No	> 50 mL/min	40-49	135
0.45	150—187	No	> 60 mL/min	34—42	135
0.8	137—200	No	> 180 mL/min	> 13	135
1.0	-	-	-	-	135

Ordering information

Nylon membrane circles

Diameter (mm)	Pore size (µm)	Catalog number	Quantity/pack
13	0.2	7402-001	100
13	0.45	7404-001	100
25	0.2	7402-002	100
25	0.45	7404-002	100
47	0.2	7402-004	100
47	0.45	7404-004	100
47	0.8	7408-004	100
47	1.0	7410-004	100
90	0.2	7402-009	50
90	0.45	7404-009	50

Polyamide membranes

Whatman polyamide membranes, made from pure polyamide, are the recommended filter for clarification and sterile* filtration.

Polyamide membrane filters are mechanically very strong and exhibit excellent wet strength and dry strength. They are hydrophilic, therefore suitable for aqueous and organic solutions, and can be used up to 135°C.

Applications

- Filtration of aqueous and organic mobile phases
- Vacuum degassing
- · Filtration of tissue culture media, microbiological media, buffers, and solutions

Polyamide membrane circles

Technical specifications

Polyamide membranes

Pore size (μm)	Nominal thickness (µm)	Water flow rate Δp = 3 mbar (bar) (mL/min/cm²)	Air flow rate Δp = 0.9 bar (mL/min/cm²)	Bubble point (bar)	Maximum temperature (°C)
0.2 (NL 16)	110	10	10	4.2	135
0.45 (NL 17)	110	20	20	2.8	135

Ordering information

Polyamide membrane circles

Diameter (mm)	Pore size (µm)	Catalog number	Membrane type	Quantity/pack
25	0.2	10414006	NL 16	100
25	0.45	10414106	NL 17	100
47	0.2	10414012	NL 16	100
47	0.45	10414112	NL 17	100
50	0.2	10414014	NL 16	100
50	0.45	10414114	NL 17	100

* Refers to sterilization by filtration for small sample use which is an industry term for filters of pore size 0.2 µm or smaller as referenced in guidance such as EPA Guidance for Industry Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice Section IX, Part B (September 2004).

Filter selection made easy

Use our online Whatman filter selector to find the right filter for your sample and application.

cytiva.com/whatmanfilterselector

03

Filtration hardware and accessories

Whatman filter holders and accessories are designed for convenience and precision. The vacuum funnels are well suited for filtration in a range of applications. The funnels and bases have precision ground faces to ensure secure clamping and integral sealing, and graduated funnels have clearly printed scales. All glassware is 100% borosilicate glass and can be easily disassembled for cleaning, loading, and autoclaving.

A choice of filter supports is available depending on the intended application. The stainless steel screen is advised for proteinaceous solutions and glass frit types are recommended for general filtration and for biological analyses.

Syringe type holders are suited for filtering or clearing small amounts of liquid where a replaceable or removable filter is desired. Filter holders for pressure filtration are available in a variety of formats and sizes to accommodate a range of filter diameters.

Glass microfiber filter accessories	
Glass vacuum filtration devices	100
Vacuum filtration equipment	
Single vacuum filtration apparatus	104
Multiple vacuum filtration apparatus	106
Syringe type holders	108
Pressure filtration devices	
Membrane prefilters and separators	114
Microbiology accessories	116
MBS I	117
Accessories and vacuum filtration apparatus	119

Glass microfiber filter accessories

3-piece filter funnel

The increased use of high-efficiency glass microfiber filters in modern laboratories has created a demand for simple and effective filter-holding systems. Whatman 3-Piece Filter Funnels have been designed to complement the range of Whatman fine particle retention, rapid flow rate glass microfiber filters.

Functional design

Three-piece construction. The funnel is quickly dismantled, ready for the insertion of a new filter. The glass sealing flanges of the funnel and reservoir are ground flat to ensure a good filter seal.

Positive filter clamping

All retained solids are deposited within the filter circle. Edge clamping prevents peripheral loss and possible passage of solution around, rather than through, the filter circle.

Simple to clean

The parts can be quickly and efficiently cleaned because of the simplicity of the design.

A choice of plates

For quick and easy filtration, Whatman 3-piece filter funnels are available with a choice of plates. They also come in several sizes to match your needs.

- Acrylic plate: Supplied as standard. Suitable for filtration of most aqueous solutions. Maximum working temperature 65°C.
- **Polypropylene plate:** Optional accessory. Recommended for most acids (except concentrated nitric acid and fuming sulfuric acid) at room temperature. Suitable for most alcohols, glycols, ethers, and ketones. Maximum working temperature 100°C.
- **PTFE plate:** Optional accessory. For virtually all common acids, alkalis and solvents at temperatures up to 100°C. Maximum working temperature 200°C.

3- piece filter funnel

3-piece filter funnel

Filter dimensions (mm)	Catalog number	Reservoir volume (mL)	Effective filtration diameter (mm)	Effective filtration area (cm ²)	Filter support plate diameter (mm)	Filter funnel height (cm)
25	1950-002	16	16	2	30	13.6
47	1950-004	36	32	8	47	12.1
70	1950-007	115	50	19.6	70	15.9
70	1950-017	210	50	19.6	70	20.8
70	1950-027	400	50	19.6	70	30
90	1950-009	200	70	38.5	90	17.9
125	1950-012	530	92	66.5	125	22

Ordering information

3-piece filter funnel accessories

	Catalog number			
Dimensions (mm)	Polypropylene plates	PTFE plates	Replacement rese	ervoirs
47	-	1950-114	-	-
70	-	1950-117	1950-207*	1950-217***
90	1950-109	-	1950-209**	-

* 115 mL ** 200 mL *** 210 mL

Glass vacuum filtration devices

Glass vacuum filtration devices come in two general styles: glass filtration assemblies and glass filter funnels. Both styles use a clamp to hold the upper funnel to the lower base, tightly sealing the filter in between to prevent fluid bypass. Borosilicate glass provides chemical compatibility and smooth surfaces for thorough cleaning. Selection of filter support is influenced by the nature of the fluid being filtered. Low particulate and low viscosity fluids filter well through in integrated porous glass support while high particulate, viscous or aggressive solvents may require a removable glass or stainless steel frit to allow for more aggressive cleaning procedures and/or better chemical compatibility.

Glass filtration assemblies

Glass filtration assemblies are designed in three pieces: upper funnel, lower base, and flask.

- · Ideal for mobile phase filtration for analytical chemistry applications
- · Selected for chemistry applications requiring minimized contact with multiple materials of construction
- Filter directly into a glass flask that can be removed and covered for analysis of filtrate, or retrieve filter for analysis of particulate collected
- Can be used for microbiological analysis by membrane filter (MF) technique

Glass filter funnels

Filter funnels are designed in two pieces: upper funnel and lower base with stopper.

- · Suitable for microbiological analysis by MF technique of water, beverages, pharmaceuticals, and personal care products.
- Versatile design allows individual filtration using a traditional side-arm Erlenmeyer flask or installation into a traditional 3- or 6-place manifold systems
- Variety of funnel sizes and membrane diameters to suit a range of applications from particulate and residue analysis to precipitation and biochemical studies

Glass filtration assembly

Glass filter funnel

Technical specifications

Glass vacuum filtration devices

Upper funnel, lower base, and flask	Borosilicate glass
Сар	Silicone
Frit	Glass D2
Sieve	Stainless steel, PTFE coated
Seals	PTFE and silicone
Clamps	Aluminum and stainless steel
Hose connection	POM, thread RD14

Ordering information

Glass vacuum filtration devices

Catalog number	Format; system	Membrane diameter	Funnel volume	Flask volume or Stopper size	Filter support
1960-002	Filter funnel	24-25 mm	25 mL	#5 Stopper	Integrated glass frit
1960-052	Filter funnel	24-25 mm	25 mL	#5 Stopper	Stainless steel with PTFE gasket
1960-032	Filter funnel	24-25 mm	50 mL	#5 Stopper	Integrated glass frit
1960-004	Filter funnel	47-50 mm	300 mL	#8 stopper	Integrated glass frit
1960-054	Filter funnel	47-50 mm	300 mL	#8 stopper	Stainless steel with PTFE gasket
1961-054	Filter funnel	-	300 mL	-	-
1960-009	Filter funnel	90 mm	1000 mL	#8 stopper	Integrated glass frit
10441000	Filter funnel; GV 025/0	24-25 mm	60 mL	-	Glass frit with PTFE centering ring
10441200	Filtration assembly	24-25 mm	60 mL	500 mL	Glass frit with PTFE centering ring
10442000	Filter funnel; GV 050/0	47-50 mm	250 mL	-	Glass frit with PTFE centering ring
10442100*	Filter funnel; GV 050/1	47-50 mm	250 mL	-	PTFE coated sieve with PTFE centering ring
10442200*	Filtration assembly	47-50 mm	250 mL	1 L	Glass frit with PTFE centering ring
10442300*	Filtration assembly	47-50 mm	250 mL	1 L	PTFE coated sieve with PTFE centering ring
10443000	Filter funnel; GV100/0	100 mm	500 mL	-	Glass frit with PTFE centering ring
10443100	Filter funnel; GV 100/1	100 mm	500 mL	-	PTFE coated sieve with PTFE centering ring

* Supplied with silicone cap with air inlet

Different Glass Vacuum filtration devices

Accessories and spare parts

Catalog number	Description	Spare part for	Quantity/pack
1961-054	Upper funnel, 300 mL, glass	1960-004; 1960-054	1
10441001	Upper funnel, 60 mL, glass for GV 025	10441000; 10441200	1
10441002	Lower base, 25 mm, glass for GV 025	10441000	1
10441003	Glass frit for GV 025	10441000; 10441200	1
10441004	PTFE Centering ring, for GV 025	10441000; 10441200	1
10441005	Clamp, for GV 025	10441000; 10441200	1
10441201	Lower base assembly with tubing and NS 29 joint for GV 025	10441200	1
10441203	Flask with NS 29 joint for GV 025	10441200	1
10440004	Clamp, for GV 050	10442000; 10442100; 10442200; 10442300	1
10442001	Upper Funnel, 250 mL for GV 050	10442000; 10442100; 10442200; 10442300	1
10442002	Lower base, 50 mm for GV 050	10442000; 10442100	1
10442003	Glass frit for GV 050	10442000; 10442100; 10442200; 10442300	1
10442004	PTFE Centering ring, for GV 050	10442000; 10442100; 10442200; 10442300	1
10442006	Cover, silicone for GV 050	10442000; 10442100; 10442200; 10442300	1
10442101	Sieve, PTFE-coated stainless steel for GV 050	10442000; 10442100	1
10442212	Lower base assembly with tubing connection and NS 45 joint for GV 050	10442300	1
10442213	Flask with NS 45 joint for GV 050	10442300	1
10443001	Upper Funnel, 500 mL for GV 100	10443000; 10443100	1
10443002	Lower base, 100 mL for GV 100	10443000; 10443100	1
10443003	Glass frit, for GV 100	10443000	1
10443004	PTFE centering ring with 2 silicon o-rings for GV 100	10443000	1
10443005	Clamp with silicone o-ring for GV 100	10443000; 10443100	1
10443101	PTFE-coated support sieve, for GV 100	10443100	1
10443102	PTFE centering ring with 2 silicon o-rings for GV 100	10443100	1
10446004	Rubber stopper for GV 100	10443000; 10443100	1

SF 100 Suction Flask

SF 100 Suction flask, 1000 mL with tubing nozzle, vacuum filtration apparatus accessories.

Technical specifications

Vacuum filtration—SF 100 Suction Flask

Apparatus selection

Parameter	SF 100 Suction Flask
Capacity	1000 mL
Pack size	1 piece

Ordering information

SF 100 Suction Flask

Catalog number	Description	Quantity/pack	
10477600	SF 100 Suction flask	1	
10471700	SV Vacuum tubing, 1 meter	1 piece	SF 100 Suction Flask

Vacuum filtration equipment

MV 050 series

The MV series vacuum filtrationequipment is made of stainless steel, providing broad chemical compatibility and ease of cleaning for years of service.

The durable construction provides flexibility of use up to 200°C and is compatible with a variety of filtration media including glass microfiber, membrane or layered filtration.

Applications

- Microbiology (e.g. Escherichia coli detection), biochemistry, hydrobiology
- Food and beverage testing, (e.g. cold sludge in beer), pharmaceuticals, cosmetics, water, wastewater
- Residue analysis, precipitate analysis, contamination tests.

MV 050/0

Technical specifications

Vacuum filtration—MV 050 series

Apparatus selection

Filter size	47/50 mm
Filter volume	100 or 500 mL
Filter area	12.5 cm ²
Prefilter	40 mm diameter
Vacuum connection	Rubber stopper
Filter support	Sieve (frit as accessory)

Materials selection

Upper and lower parts	Stainless steel 1.4301
Cover	Stainless steel 1.4301
Frit	Stainless steel 1.4571
Sieve	Stainless steel 1.4301
Seals	PTFE and silicone
Clamps	Aluminum

MV 050A/0

MV 050 series

Catalog number	Description	Quantity/pack
10440000	MV050/0 vacuum filtration apparatus, stainless steel, 500 mL, 47/50 mm	1
10440020	MV050A/0 vacuum filtration apparatus with rapid closure clamp, stainless steel, 500 mL, 47/50 mm	1

Ordering information

Accessories and spare parts

Catalog number	Description	Spare part for	Quantity/pack
10440001	Funnel, 500 mL	MV050/0	1
10440003	Support screen, stainless steel	MV050/0; MV050A/0	1
10440004	Clamp, aluminum	MV050/0	1
10440006	O-ring, silicone for lid	MV050/0; MV050A/0	1
10440102	Gasket, PTFE, sealing for support screen	MV050/0; MV050A/0	1
10471700	SV006 Vacuum tubing, 1 meter		1
10477600	SF Suction Flask		1

Multiple vacuum filtration apparatus

AS 300 and 600 series

The stainless steel manifold and manifold assemblies for three or six filtration units are fitted with stainless steel units. The apparatus can be autoclaved and sterilized by dry heat at up to 180°C. It is suitable for vacuum operation, not intended for positive pressure applications.

Applications

- Microbiological quality control
- Residue analyses
- · Serial filtration carried out rapidly and easily with a common drainage outlet

Technical specifications

AS 300 and 600 series-multiple vacuum filtration apparatus

Apparatus selection

Filter size	47/50 mm
Filter volume	100 or 500 mL
Manifold	3 or 6 stopcocks and lower parts for individual choice of filter units
Filter support	Sieve (frit as accessory)
Vacuum connection	Tubing nozzle 9 mm (inside diameter)

Multiple filtration apparatus complete and ready for use. Filters and prefilters sold separately.

AS 300/3 showing standard clamp closure

AS 610/3 showing rapid clamp closure

Stainless steel 3-place manifold

Multiple vacuum filtration apparatus

Catalog number	Description	Quantity/pack
10445850	AS300/5 manifold assembly, stainless steel 100 mL, standard clamp closure	1
10445830	AS300/3 manifold assembly, stainless steel 500 mL, standard clamp closure	1
10445835*	AS310/3 manifold assembly, stainless steel 500 mL, rapid clamp closure	1
10498761**	Stainless steel filter funnel 3-place manifold, use with up to three manifold assemblies	1
Six-place filtration		
10444850	AS600/5 manifold assembly, stainless steel 100 mL, standard clamp closure	1
10444830	AS600/3 manifold assembly, stainless steel 500 mL, standard clamp closure	1
10444835*	AS610/3 manifold assembly, stainless steel 500 mL, rapid clamp closure	1
10498762**	Stainless steel filter funnel 6-place manifold, use with up to six manifold assemblies	1

* With rapid closure clamp

** Recommended for use with funnels and #8 stopper, funnels not included

Ordering information

Spare parts

Catalog number	Description	Spare part for	Quantity/pack
10440003	Support screen, stainless steel	10445850; 10445830; 10445835; 10444850; 10444830; 10444835	1
10440004	Clamp, aluminum	10445850; 10445830; 10444850; 10444830	1
10440102	Gasket, PTFE, sealing for support screen	10445850; 10445830; 10445835; 10444850; 10444830; 10444835	1
10471700	SV006 Vacuum tubing, 1 meter	10445850; 10445830; 10445835; 10444850; 10444830; 10444835	1
10464103	Steel frit with ring	10445850; 10445830; 10445835; 10444850; 10444830; 10444835	1
10440001	Funnel, 500 mL	10445830; 10445835; 10444830; 10444835	1
10440006	O-ring, silicone for lid	10445830; 10445835; 10444830; 10444835	1

Inline and syringe type filter holders

Stainless steel filter holders

Whatman stainless steel filter holders provide broad compatibility in a durable stainless steel housing for repeated cleaning and reuse. The housings accommodate a range of filter media for applications that include particulate removal, venting, HPLC sample prep, clarification or sterilization.* These housings are well suited for applications for which retrieval of the membrane filter and concentrated particulate is essential. Autoclave with membrane in place for applications requiring a sterile device.

Syringe filter holders have female Luer lock inlets and male Luer outlets compatible with typical syringes. Inline holders have hose barb inlet and outlet for tubing connections. Knurled edges assist in tightening and loosening the devices.

Ordering information

Stainless steel filter holders

Filter diameter (mm)	Catalog number	Description	Quantity/pack
Membrane holders			
13	1980-001	Stainless steel syringe filter holder	1
25	1980-002	Stainless steel syringe filter holder	1
25	10460100	FM025/0 stainless steel, syringe filter holder*	1
50	10464100	ML050/0 stainless steel, inline filter holder	1

* Filter supports for 10460100 are not removeable from the holder

Syringe type holders
Polysulfone filter holders

Durable polysulfone plastic construction provides moderate chemical compatibility with lighter weight than stainless steel filter holders. Polysulfone filter holders are often used for clarification, sterilization*, venting applications and particulate removal or collection from aqueous or air or gas streams. FP025/1 25 mm size is available only as a syringe filter holder with female Luer lock (FLL) inlet and male Luer (ML) outlet. FP050 is available with either FLL inlet and MLL outlet or hosebarb inlet and outlet.

Ordering information

Polysulfone filter holders

Filter diameter (mm)	Catalog number	Description	Quantity/pack
25	10461000	FP025/1: FLL inlet, ML outlet	10
50	10461100	FP050/0; FLL inlet, hose barb outlet	1
50	10461200	FP050/0; FLL inlet, hose barb outlet	5
50	10461300	FP050/1; hose barb inlet and outlet	1
50	10461400	FP050/1; hose barb inlet and outlet	5

Polysulfone filter holders

FLL—Female Luer lock

ML—Male Luer lock

Ordering information

Spare parts

Catalog number	Description	Spare part for	Quantity/pack
10453007	Connector hose barb (9 mm) with 3/8" MNPT	10464100	1
10464103	Support frit, stainless steel	10464100	1
10461118	Hose barb connection	10461100; 10461200; 10461300; 10461400	1
10450009	O-ring, silicone for membrane seal	10461100; 10461200; 10461300; 10461400	1

* Refers to sterilization by filtration for small sample use which is an industry term for filters of pore size 0.2 µm or smaller as referenced in guidance such as EPA Guidance for Industry Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice Section IX, Part B (September 2004).

Pop-Top and Swin-Lok plastic filter holders

Cost effective, reuseable filter holders for general filtration applications, especially when retrieval of the membrane is required. Simple easy filtration using typical syringes.

13 mm Pop-Top syringe filter holder

- Unique sealing design requires no additional gasket.
- Inexpensive alternative to 13 mm stainless steel filter holders.

25 mm Swin-Lok filter holder

- Chemically compatible polypropylene construction is suitable for solvent filtration and HPLC applications.
- Tabs on assembly ring and base assist with secure tightening of the device.
- Inlaid o-ring and anti-twist tabs on inlet cap assure leak-free sealing without damage to the filter.

47 mm Swin-Lok filter holder

- Durable polycarbonate construction with matching, bidirectional filter support.
- Inlaid o-ring and anti-twist tabs on inlet cap assure leak-free sealing without filter damage.
- Flat sealing gasket and tightening ridges assist tightening of assembly ring for secure seal of filter to prevent bypass.

Pop-Top and Swin-Lok plastic filter holders

Technical specifications

Pop-Top and Swin-Lok plastic filter holders

Materials	13 mm Pop-Top	25 mm Swin-Lok	47 mm Swin-Lok
Holder	Polycarbonate	Polypropylene	Polycarbonate
Maximum operating temperature and pressure	38°C at 3.5 bar (50 psi)	38°C at 3.5 bar (50 psi)	38°C at 3.5 bar (50 psi)
Autoclave sterilization	121°C at 15 psi for 15 min.	121°C at 15 psi for 15 min	121°C at 15 psi for 15 min
Size (cm)	2.7 OD × 2.7 H	3.5 OD × 3.7 H	6.0 OD × 6.5 H
Membrane size (mm)	13	25	47
Prefilter size (mm)	10	22	42
Filter surface area (cm²)	0.8	3.5	11.3
Connection			
Сар	Female Luer slip	Female Luer lock	Multipurpose: straight female Luer (accepts male Luer or 1/4" tubing) with threaded base (1/4" MNPT)
Base	Male Luer	Male Luer	Multipurpose: straight female Luer (accepts male Luer or 1/4" tubing) with threaded base (1/4" MNPT)

Ordering information

Pop-Top and Swin-Lok plastic filter holders

Diameter (mm)	Catalog number	Description	Quantity/pack
13	420100	Pop-Top holder	10
25	420200	Swin-Lok holder	10
47	420400	Swin-Lok holder	8

Pressure filtration devices

Whatman offers a line of analytical pressure filtration equipment with sample loading cylinders that provide flexibility for sample processing. The stainless steel construction provides broad compatibility. For particularly aggressive solvents and caustic materials, select the PTFE 142 mm device. Compatibile for use with a range of filter media including paper, glass fiber and membrane filters.

Applications

- Suitable for analysis of soils and other solids for which you need to use pressure to drive the fluid component through a filter medium to analyze chemical content of the filtrate.
- Subject solids loaded into the cylinder to various fluids to characterize the extractables leaching from the solid under study.
- Maintain pressure on a sample being filtered so that evaporation doesn't affect the content of the sample during filtration.
- Use for polymer solutions that require steady pressure over the length of filtration time.

Technical specifications

Pressure filtration devices

Series	Material	Seals	Max pressure* (bar)	Max temperature resistance (°C)	Filter diameter (mm)	Prefilter diameter (mm)
MD 050	Stainless steel	Silicone/PTFE	10/4	200	50	43
MD 142/5	Stainless steel	Silicone/PTFE	10/4	200	142	134
MD 142/7	PTFE	PTFE	3.5	200	142	134

* With silicone o-ring/PTFE o-ring

142 mm pressure filtration holder, PTFE

142 mm pressure filtration holder, SS

Pressure filtration devices

Catalog number	Description	Quantity/pack
Stainless steel		
10450450	MD 050/4, 200 mL, 230 × 70 mm with rapid seal	1
10451610	MD 142/5/3, 2200 mL, 545 × 200 mm	1
PTFE		
10451710	MD 142/7/3, 1500 mL, 470 × 200 mm	1

Ordering information

Accessories and spare parts

Catalog number	Description	Spare part for	Quantity/pack
10450009	MD 050 o-ring, silicone for membrane seal	10450450	1
10450003	MD 050 support screen, stainless steel	10450450	1
10453001	Quick Closure Coupling for SV 003 c pressure hose (10471101)	10450450; 10451610; 10451710	1
10453007	Compression fitting, ferrule external diameter 9-11 mm, for pressure hoses	10450450; 10451610; 10451710	1
10471101	SV 003c pressure hose; maximum 10 bar; connector SVK/R 3/8"; ID 6mm; length 1.5 m	For use with connector 10453001	1
10450004	MD 050 support sieve	10450450	1
10451414	MD 142/5/3 closure clamp	10451610	1
10452003	MD 142 support screen	10451610; 10451710	1
10452004	MD 142 support sieve	10451610; 10451710	1
10452005	MD 142/5/3 back pressure sieve	10451610	1
10452006	MD 142 o-ring, silicone	10451610; 10451710	1

Membrane prefilters and separators

The life of a membrane filter can be extended many times by placing a prefilter adjacent to or upstream of the membrane. The total particulate load challenging the membrane is considerably reduced thus allowing the membrane to operate efficiently.

Whatman glass microfiber filters are used as prefilters for membranes. The outstanding properties of borosilicate glass microfibers mean the filters offer high loading capacity and retention of very fine particulates.

The Whatman Multigrade GMF 150, used as a prefilter, nearly doubles the volume of sample filtered compared to a single density prefilter. Compared to an unprotected membrane, the volume of sample filtered is three to seven times greater. Conventional prefilters cannot perform in the same way as the Multigrade GMF 150 simply because prefilters of a uniform density do not have the same loading capacity. For highly particulate loaded samples, the performance of GMF 150 filters is outstanding.

Technical specifications

Glass microfiber prefilter circles

Prefilter diameter (mm)	Pore size (µm)	Multigrade GMF 150	Grade GF/B (fine)	Grade GF/D (coarse)	Quantity/pack	
10	2.7	-	-	1823-010	100	
25	1.0	-	1821-025	-	100	
25	2.7	-	-	1823-025	100	
35	2.7	-	-	1823-035	100	
37	1.0	-	1821-037	-	100	
42.5	1.0	-	1821-042	-	100	
42.5	2.7	-	-	1823-042	100	
47	1.0	-	1821-047	-	100	
47	2.0	1842-047	-	-	40	
47	2.7	-	-	1823-047	100	
90	1.0	1841-090	-	-	20	
90	2.0	1842-090	-	-	20	
90	1.0	-	1821-090	-	25	
90	2.7	-	-	1823-090	25	
125	1.0	-	1821-125	-	25	
125	2.7	-	-	1823-125	25	
142	2.7	-	-	1823-142	25	
257	2.7	-	-	1823-257	25	

For further information on these grades please refer to the Filter Papers section.

Glass Microfiber Filters, Binder Free

Polyester drain discs

Use these drain discs with hardware where extra support is needed, or between membrane filters to improve flow rate and throughput. The polyester drain disc is binder free and has a thickness of 100 μ m. It provides a flat surface to prevent filter tearing or rupturing of a filter when placed below, or used as a separator between membrane layers in serial stack filtration applications. This chemically inert support disc is available in a variety of diameters for use in a range of devices.

Applications

- General laboratory microfiltration.
- Support for membranes such as polycarbonate track etched filters.
- For use under membrane filter to prevent imprinting of hardware support structure during filtration, facilitate sealing, and to aid in channeling fluid flow through entire effective filtration.
- Use between membrane filters to facilitate fluid flow between membrane layers.

Polyester Drain Disc

Ordering information

Polyester drain discs

Diameter (mm)	Catalog number	Filter support	Quantity/pack
10	230300	Polyester	100
22	230500	Polyester	100
25	230600	Polyester	100
37	230800	Polyester	100
47	231100	Polyester	100
90	231200	Polyester	100
142	232310	Polyester	100
293	232300	Polyester	100

Filtration hardware and accessories –

Microbiology equipment

MBS I microbiology filtration system

Flexible, reliable and economical

Busy microbiology labs need a reliable system to process samples. The Whatman MBS I microbiology filtration system is designed for detection and enumeration of bacteria and fungi using membrane filtration (MF) technique. The modular system provides flexibility to select the hardware and accessories that best suit the unique and varied workflows of your lab.

- Filter funnels: 100 and 350 mL sizes for single use or multiple re-use
- Funnel dispenser: accommodates both funnel sizes and maintains an orderly workspace
- AS220 MBS I manifold: customize test stand size in 2-place segments
- Membrane selection: variety of pore sizes, color and packaging
- eButler membrane dispenser: aseptically dispense discs using sensor dispense or press of a button

Features and benefits

- Ensure accurate results
 - For use with a selection of membranes qualified to meet ISO 7704 testing requirements.
- Manifold tightly secures membrane between funnel and manifold support to assure a leak-free seal with no sample bypass.
- Control contamination by maintaining a clean manifold. Chemically compatible and durable stainless steel manifold disassembles easily for thorough cleaning and autoclaving.
- Customize your workspace
 - Modular manifold in 2-place segments can easily be coupled to create 4- or 6-place manifold to increase testing capacity.
 - Select from 100 or 350 mL funnel cylinders to match your sample volume.
 - Utilize benchtop most efficiently and maintain order in the workspace by using the funnel dispenser alongside the manifold.
 - Efficient and economical.
 - Polypropylene funnels are durable, chemically compatible and designed for multiple re-use.
 - Autoclave funnels up to 50 times to reduce the plastics waste in a busy lab.
 - Arrange filtration workspace in right-or left-handed workflow suitable to any analyst.
 - 350 mL funnels are 40% larger than the typical 250 mL funnels, so they are well suited for concentrating larger samples such as cooling water samples for *Legionella sp*.
 - Further increase efficiency by adding eButler membrane dispenser and aseptically receive each disc with the press of a button or sensor dispense. In addition, the eButler coils all packaging waste to maintain a clean, clutter-free benchtop.

Microbiology equipment

MBS I workflow

The Membrane Filtration (MF) Technique is a versatile and useful method of concentrating organisms from an aqueous sample onto the surface of a filter for reliable detection and accurate enumeration. Typical applications include:

- Drinking water quality
- Wastewater discharge
- Recreational water quality
- Environmental monitoring
- Non-alcoholic beverages and juices
- Beer, wine and spirits testing

Ordering information

MBS I

Catalog number	Product	Description	Quantity/pack
10445890	AS220	2-place vacuum filtration manifold for MBS I	1
1044871	Dispenser for funnels	Dispenser for 100 mL and 350 mL funnels for MBS I	1
10445861	Funnel—100 mL	Plastic funnel of PP, autoclavable	20
10445866	Funnel—350 mL	Plastic funnel of PP, autoclavable	20

Ordering information

Accessories and spare parts for MBS I

Catalog number	Description	Spare part for	Quantity/pack
10445863	Support frit, stainless steel	10445890	1
10445894	TC-seal for AS220/AS230 1/pk	10445890	1
10445895	TC-hose barb AS220 1/pk	10445890	1
10445897	TC-clamp AS220 1/pk	10445890	1
10445868	Autoclave bags	10445861; 10445866	20
10477602	Tweezers, stainless steel	Membrane handling	1
10471700	SV006 Vacuum tubing, 1 meter	10445890	1
10477600	SF Suction Flask	10445890; 10471700	1

1. Secure membrane and funnel

2. Filter and rinse sample

3. Plate and Incubate

4. Count and record

eButler membrane dispenser

Aseptic dispense, clean workspace

The eButler membrane dispenser is an aseptic membrane filter dispenser that offers ways to boost lab productivity while minimizing waste and clutter. Designed to accept a continuous web of sterile, individually sealed membrane filters, it offers aseptic dispensing of each disc while containing the waste on spindles for easy clean up.

- Push-button or sensor dispense.
- Durable and easy-to-load guides are printed right on the equipment.
- Complete membrane selection of pores sizes, colors and 47 or 50 mm diameters is available.
- Membrane identification is easy to read with every dispense.
- Maintain a tidy workspace free of packaging material.

Ordering information

eButler membrane dispenser

Catalog number	Description	Use	Quantity/pack
10477103	eButler membrane dispenser	Automatic dispense of filters	1

eButler membrane dispenser

Accessories and vacuum filtration apparatus

Vacuum pump

Vacuum pumps are typically used in laboratory settings to facilitate filtration with funnels and flasks or manifolds for microbiological examination, analytical mobile phase filtration, aspiration of tissue culture media, and various other filtration applications requiring vacuum draw.

Features

- Diaphragm pump intended for use with fluid trap collection and compatible with systems filtering water or typical HPLC solvent filtration*
- For intermittent use under ambient conditions (10°C-40°C)*
- Lightweight and compact pump for easy movement around the lab while using minimal workspace on the benchtop or in the hood

Witt's bottle WT 100

For filtrate collection in an inserted container. The bottle is made of borosilicate glass. It has a replaceable round lid and side-mounted tubing nozzle for vacuum tubing 8 mm (inside diameter).

Forceps PZ 001

The stainless steel forceps with smooth angled jaws (104 mm long) are excellent for handling membrane filters. They are autoclavable and can be flame sterilized with ethanol.

Witt's Bottle WT 100 and Forceps PZ 001

Technical specifications

Vacuum pump

Delivery (L/min)	Vacuum (mbar absolute)	Voltage/frequency	Weight (kg)
13	< 100	115 – 240 V / 50 – 60 Hz	2.7

Technical specifications

Witt's bottle WT 100

Apparatus selection	Vacuum (mbar absolute)
Size	100 mm diameter
Height	160 mm
Capacity	1000 mL
Vacuum connection	Tubing nozzle 8 mm (inside diameter)

Ordering information

Vacuum filtration apparatus accessories

Catalog number	Description	Quantity/pack
10470301	Vacuum pump, dual voltage	1
10477601	WT 100 Witt's flask, 1000 mL with tubing nozzle	1
10477600	SF 100 suction flask, 1000 mL with tubing nozzle	1
10471700	SV 006 vacuum tubing, 1 m length	1
10477602	PZ 001forceps, stainless steel	1

Filter selection made easy

Use our online Whatman filter selector to find the right filter for your sample and application. **cytiva.com/whatmanfilterselector**

Name of Arriver

Filtration devices

Whatman disposable filtration devices are suitable for many types of samples and applications. They are available in a wide variety of membrane choices with polypropylene or polycarbonate housing, and utilize the most advanced construction methods and design features.

Syringe filter selection guide	124
Filter diameter and recommended volume	125
Device media characteristics and properties	126
Syringe filters	128
Whatman Buradice syringe filters	129
Whatman Anoton syringo filtors	129
Difficult to filter	120
Whatman GD/X syringe filters	130
Whatman GD/XP syringe filters	143
Whatman Puradisc Plus	145
Whatman Anoton Plus syringe filters	145
Filters for automated systems	
Whatman Roby 25 for robotic systems	
Whatman Roby 25 Filter Validation Kit	
Whatman DS-850 Channel Filter Plate	
Application Specific Syringe Filters	150
Whatman Puradisc Aqua	150
Whatman Anotop IC	
Whatman Anotop LC	
Whatman SPARTAN HPLC certified syringe filters	
Whatman Protein Prep syringe filter for ÄKTA systems	
All-in-one filters and filter vials	155
Whatman Mini-UniPrep integrated syringeless filters and filter via	als155
Whatman Mini-UniPrep G2 integrated	
syringeless filters and glass vials	160
Whatman UniPrep filter vials	162
Whatman Autovial filter vials	164
Advantage syringe filters	166
Whatman Uniflo syringe filters	
Mobile phase filtration	170
Inline filter/degasser	170
Polydisc filters	172
Capsule filters	178
Venting filters	
Whatman PolyVENT integral vent filters	
HEPA-VENI and HEPA-CAP	
vacuum protection filters	193
VACU-GUARD vacuum protection filters	

Caroline

Syringe filter selection guide

		0	Acetate	utrate	ð	lene ol	yproylene		j	Ic PTFE		edcellulose cro
	Anopore	Cellulost	Cellulost	Aylon	Polyprot	Depthpe	PES	PTFE	Hydroph	PUDF	Regenett	GI855 MIL
Puradisc		•	•	•	•	٠	•	•	•	•	•	•
Anotop	•											
Anotop Plus	•											
GD/X		٠		•	•	٠	•	٠		•		
Puradisc Plus		٠	•									
GD/XP				•	•	٠	•	•		•		
Roby				•							•	•
850-DS				•			٠	•		•		•
Anotop IC	•											
Anotop LC	•						•••••					
Puradisc Aqua		•					••••••					
MashPrep				•								
SPARTAN Certified											•	
Protein Prep											•	
Autovial		•		•	•		•	•		•	•	•
UniPrep		•		•				٠		•	•••••••	•
MUP				•	٠	٠	•	•		•	•	•
MUP G2			•••••••	•	٠			٠	••••••	•	•	•
Uniflo				•			•	•	•	•		•
	Puradisc Anotop Anotop Plus GD/X Puradisc Plus GD/XP Roby 850-DS Anotop IC Anotop IC Anotop IC Puradisc Aqua MashPrep SPARTAN Certified Protein Prep Autovial UniPrep MUP MUP G2 Uniflo	PuradiscAnotop•Anotop Plus•GD/X•GD/XP•GD/XP•S50-DS•Anotop IC•Anotop LC•Puradisc Aqua•MashPrep•SPARTAN Certified•Protein Prep•Autovial•UniPrep•MUP•MUP G2•Uniflo•	PuradisccenturesAnotop•Anotop Plus•GD/X•Puradisc Plus•GD/XP•Roby•850-DS•Anotop IC•Anotop LC•Puradisc Aqua•MashPrep•SPARTAN Certified•Protein Prep•Autovial•MUP•MUP G2•Uniflo•	Puradisc	PuradiscconverseconversewereAnotop••••Anotop Plus••••GD/X••••Puradisc Plus••••GD/XP••••Roby••••850-DS••••Anotop IC••••Anotop IC••••MashPrep••••SPARTAN Certified••••MUP•••••MUP•••••MUP G2•••••Uniflo•••••WUP G2•••••Uniflo•••••Wurflo•• <td>Puradisc</td> <td>Puradisc organization organization organization organization Anotop •<</td> <td>Juradisc Juradisc Jurad</td> <td>Roby Conversion Second Se</td> <td>Juradisc </td> <td>Juradisc Juradisc Jurad</td> <td>Lower Lower <thlower< th=""> <thlower< th=""> <thlo< td=""></thlo<></thlower<></thlower<></td>	Puradisc	Puradisc organization organization organization organization Anotop •<	Juradisc Jurad	Roby Conversion Second Se	Juradisc	Juradisc Jurad	Lower Lower <thlower< th=""> <thlower< th=""> <thlo< td=""></thlo<></thlower<></thlower<>

Visit **cytiva.com** for additional selection guidance.

Device media characteristics and properties

The right choice of filter media for any given application or analytical technique is critical for optimal performance. Chemical compatibility, hydrophilic or hydrophobic nature, low extractables, low protein binding, high loading capacity (for high particulate samples) are all characteristics that need to be considered in filter media selection. Whatman offers a broad range of filter media. Use the descriptions below to help guide your selection of the most appropriate solution for your sample type, application or technique.

Cellulose acetate (CA)

A hydrophilic membrane which exhibits very low protein binding characteristics. Generally used in applications involving filtration of proteinaceous suspensions, either for recovery or for analysis of proteins, amino acids etc. Limited compatibility with organic solvent, but can be used with some alcohols.

Cellulose nitrate (CN)

A hydrophilic membrane, generally used for aqueous samples though may be used with some organic solvents such as aliphatic hydrocarbons. Not generally recommended for applications where low protein binding characteristics and maximum recovery of proteins or amino acids are required.

Nylon/polyamide (NYL)

A hydrophilic membrane with resistance to a broad range of organic solvents and suitable for use with high pH samples. Not generally recommended for applications where low protein binding characteristics and maximum recovery of proteins or amino acids are required.

Polyethersulfone (PES)

A hydrophilic membrane exhibiting low protein binding and low extractables. Suitable for filtration of aqueous samples and some compatible organic solvents. Especially well-suited for aqueous sample preparation where low protein binding is important, and for HPLCA sample preparation of aqueous suspensions.

Polyvinylidene difluoride (PVDF)

A hydrophilic membrane with good general chemical compatibility to a broad range of organic solvents and exhibiting low protein binding. Useful for filtering aqueous/organic suspensions, especially where minimal protein binding is required.

Polytetrafluoroethylene (PTFE)

A hydrophobic membrane that is resistant to most organic solvents as well as strong acids and bases. Generally low protein binding and low in extractables. Main applications are the filtration of non-aqueous samples, especially where an inert nature and good chemical resistance are required such as for strong, aggressive organic solvents. Prior to filtering aggressive aqueous solutions, the membrane must be prewet with a water-miscible solvent such as methanol or IPA in order to allow aqueous suspension to pass.

Hydrophilic polytetrafluoroethylene (H-PTFE)

A hydrophilic membrane that offers broad chemical resistance, low protein binding and low extractables and can be used for both aqueous and aggressive organic solvents. The inert nature and low extractables of hydrophilic PTFE makes it particularly suitable for uHPLC/HPLC sample preparation where a variety of different sample types may need to be prepared, as well as for many other applications requiring broad chemical resistance.

Regenerated cellulose (RC)

A hydrophilic membrane that is resistant to a very wide range of solvents and exhibits low protein binding characteristics. The broad chemical resistance and low extractable nature of regenerated cellulose makes it an excellent choice for general HPLC sample preparation of samples suspended in either aqueous or organic solvents. The low protein binding character suits applications where minimal binding and maximizing recovery of proteins and amino acids are important.

Polypropylene (PP)

A mildly hydrophobic membrane that offer broad chemical resistance to many organic solvents. Especially suited to filtration of aqueous/organic solvent suspensions.

Polypropylene depth filter (DpPP)

A mildly hydrophobic filter with excellent flow rates and loading capacity and is compatible with both aqueous and organic solvents. This media is a good choice where increased loading capacity is required such as general clarification of samples.

Anopore (ANP)

Anopore, the membrane used in Anotop filters, is a hydrophilic membrane with excellent organic solvent compatibility, an inert nature and low extractables, making it very suitable for use with both aqueous and organic samples. The membrane has a well-defined pore structure and very narrow pore-size distribution making it especially suitable for critical applications and sample preparation. Not suitable for use with very acidic or very basic samples.

Glass microfiber/glass fiber (GMF/GF)

Offers very broad chemical compatibility with organic solvents and strong acids (apart from hydrofluoric acid) and bases due to the inherent inert nature of glass microfiber. The physical structure of the glass microfiber filter matrix offers a combination of good loading capacity and high flow rates when compared to membrane filter media. Especially suited to use either as a prefilter or for general clarification of samples with high levels of particulates.

Syringe filters

Whatman disposable syringe filter devices provide fast and efficient filtration of aqueous and organic solutions. With a wide variety of membrane filters and polypropylene or polycarbonate housing, Whatman syringe filters are made with advanced methods and design features. These syringe filters are suitable for numerous applications in pharmaceutical, environmental, biotechnology, food and beverage, and agricultural testing laboratories.

Whatman syringe filters are composed of either pure polypropylene or polycarbonate housing, and heat sealed without the use of glues or sealants.

Product option overview

Syringe filters

Syringe filter	Membrane	Diameter (mm)	Features
Whatman Puradisc	CA, CN, RC, PTFE, H-PTFE, Nylon, PP, DpPP, PES, PVDF, GMF	4, 13, 25, 30	High Performance filters with the most options for membranes, diameters and applications
Whatman Anotop	Anopore	10, 25	Contains proprietary alumina-based membrane, extremely small pore size
Whatman GD/X	CA, PTFE, Nylon, PP, PES, PVDF, GMF, RC	13, 25	Contains proprietary Whatman GMF150 prefiltration stack
Whatman GD/XP	Nylon, PVDF, PP, PES, PTFE, DpPP	25	Contains proprietary polypropylene prefiltration stack, suitable for inorganic ion analysis
Whatman Puradisc Plus	GMF	30	Larger syringe filter containing GMF
Whatman Anotop Plus	Anotop	10, 25	Contains proprietary alumina-based membrane, extremely small pore size with added benefit of GMF prefilter
Whatman Roby	Nylon, RC, GMF	25	Designed to be compatible with the major dissolution test systems
Whatman 850-DS	PTFE, Nylon, PES, PVDF, GMF	25 (plate of 8)	Designed for use on Agilent 850-DS Dissolution Autosamplers
Whatman Puradisc Aqua	СА	30	Filter environmental samples prior to COD and DOC analysis
Whatman IC	Anopore	10, 25	Designed for ion chromatography
Whatman LC	Anopore	10, 25	Designed for low UV-absorbing extractables
Whatman HPLC Certified (Spartan™)	RC	13, 30	Certified for low UV-absorbing extractables
Whatman ProteinPrep	RC	13, 30	For use with ÄKTA systems and protein samples
Whatman Uniflo	Nylon, PES, PVDF, PTFE, H-PTFE	13, 25, 30	Advantage of Whatman performance, maximum value

CA-Cellulose acetate CN-Cellulose nitrate GMF-Glass Microfiber PES-Polyethersulfone PP-Polypropylene PTFE—Polytetrafluoroethylene H-PTFE—Hydrophillic polytetrafluoroethylene PVDF—Polyvinylidene difluoride RC—Regenerated Cellulose DpPP—Polypropylene depth filter

Safety

These safety guidelines are applicable to ALL syringe filters.

Syringe use can result in high pressure. The smaller the syringe, the higher the pressure that can be generated. As a general guide, the following pressures can be obtained by hand with the syringes indicated:

- 20 mL: 30 psi (2 bar)
- 10 mL: 50 psi (3.4 bar)
- 5 mL: 75 psi (5.2 bar)
- 3 mL: 100 psi (6.9 bar)
- 1 mL: 150 psi (10.3 bar)

Individual users should determine the pressure they generate by hand with a specific size syringe and take appropriate safety precautions not to exceed the recommended rating for the device used. If the limitations are exceeded, the device may burst.

See appendix section for summary of typical properties, product availability and application guidance.

High performance syringe filters

Whatman Puradisc syringe filters

Whatman Puradisc syringe filters combine premium quality with high performance. They are used for the quick, efficient filtration of samples up to 100 mL volume.

Whatman Puradisc filters are produced from pigment-free polypropylene or polycarbonate with standard inlet (female Luer lock) and outlet (male Luer) connections (unless otherwise stated). Options include a sterile, medical-grade blister pack for critical applications and a special tube tip outlet that allows the sample to be accurately dispensed into a micro-vial, removing air lock.

Features and benefits

- Pigment-free polypropylene (polycarbonate for Whatman Puradisc 30 mm and Whatman Puradisc Aqua)
- Standard inlet and outlet Luer connectors
- Optional sterile, medical-grade blister pack
- Tube-tip format (optional) for accurate dispensing into a micro-vial
- · Choice of membrane or glass microfiber filter media
- Choice of filter sizes (4, 13, 25 or 30 mm) to minimize sample loss
- Sterile* option for critical applications
- Wide range of membranes to suit different sample types

Whatman Puradisc 4

Features

- · 4 mm diameter syringe filter
- Sample volume up to 2 mL
- Low hold-up volume < 10 µL ensures maximum sample recovery
- Tube-tip format (optional)

Applications

- · High performance liquid chromatography (HPLC) samples containing low solid content: filtration will improve column life.
- Capillary electrophoresis (CE) samples: filtration will remove spurious peaks.
- Sterile* filtration of low volume samples.
- UV/Vis samples: filter directly into cuvette using tube tip.
- Refractometry: filter samples to prevent damage to instrument optics and improve accuracy of results.
- Minimizes nonspecific binding to membrane (due to small membrane size).

* Refers to sterilization by filtration for small sample use which is an industry term for filters of pore size 0.2 µm or smaller as referenced in guidance such as EPA Guidance for Industry Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice Section IX, Part B (September 2004).

Whatman Puradisc 13

Features

- 13 mm diameter syringe filter
- Sample volume up to 10 mL
- Low hold-up volume < 25 µL ensures maximum sample recovery
- Glass microfiber option available
- Tube-tip format (optional)

Applications

- Biological sample preparation
- HPLC sample preparation

Whatman Puradisc 25

Features

- 25 mm diameter syringe filter
- Sample volume up to 100 mL
- Low hold-up volumes for maximum sample recovery
- Glass microfiber option available

Applications

- HPLC aqueous sample preparation
- Biological sample preparation
- Buffer solutions
- Salt solutions
- Tissue culture media
- Irrigation solutions
- Sterile* isolation

Whatman Puradisc 30

Features

- 30 mm diameter
- Larger filtration area (44% greater in comparison with 25 mm)
- Designed for aqueous and non-aqueous samples

Puradisc 13 syringe filters with tube tip

Whatman Puradisc 25 syringe filters

Whatman Puradisc 30 syringe filters

* Refers to sterilization by filtration for small sample use which is an industry term for filters of pore size 0.2 µm or smaller as referenced in guidance such as EPA Guidance for Industry Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice Section IX, Part B (September 2004).

Technical specifications

Whatman Puradisc syringe filters

	Puradisc 4	Puradisc 13	Puradisc 25	Puradisc 30
Housing	Polypropylene	Polypropylene	Polypropylene	Polycarbonate/Polypropylene
Filtration area	0.2 cm ²	1.3 cm ²	4.2 cm ²	5.7 cm ²
Maximum pressure	75 psi (5.2 bar)	75 psi (5.2 bar)	75 psi (5.2 bar)	100 psi (6.9 bar)
Volume hold-up full housing with air purge	< 10 µL	< 25 µL	< 100 µL	< 50 µL
Dimensions	10.1 × 23.5 mm	16.3 × 19.8 mm	22.9 × 28.4 mm	26 × 34 mm
Weight	0.55 g	0.95 g	2.7 g	4.7 g
Volume throughput	Up to 2 mL	Up to 10 mL	Up to 100 mL	Up to 100 mL
Inlet connection	Female Luer lock	Female Luer lock	Female Luer lock	Female Luer lock
Outlet connection	Male Luer	Male Luer	Male Luer	Male Luer
Sterlization	Autoclave at 121°C (131°C max)	Autoclave at 121ºC (131ºC max)	Autoclave at 121ºC (131ºC max)	Autoclave at 121ºC (131ºC max)

Ordering information

Whatman Puradisc 4 mm syringe filters

		Catalog number		
Pore size (µm)	Nylon	PVDF	PTFE	Quantity/pack
Nonsterile with tube tip				
0.2	-	6777-0402	-	50
0.45	-	6777-0404	-	50
Sterile without tube tip				
0.2	6786-0402	6791-0402	-	50
Nonsterile without tube tip				
0.2	6789-0402	6779-0402	6784-0402	100
0.2	6790-0402	6792-0402	6783-0402	500
0.45	6789-0404	6779-0404	6784-0404	100
0.45	6790-0404	6792-0404	6783-0404	500

PTFE—Polytetrafluoroethylene

PVDF—Polyvinylidene difluoride

Whatman Puradisc 13 mm syringe filters (nonsterile)

					Catalog Numb	er				
Pore size (µm)	CA	Nylon	PES	PVDF	PP	PTFE	GMF	RC	H-PTFE	Quantity/pack
With tube tip										
0.2	-	-	-	6777-1302	-	6775-1302	-	-	-	50
0.2	-	-	-	-	-	10463703	-	-	-	100
0.45	-	-	-	6777-1304	-	6775-1304		-	-	50
0.45	-	-	-	-	-	10463713	-	-	-	100
Without tube ti	р									
0.1	-	6789-1301	-	-	-	6784-1301	-	-	-	100
0.2	-	6789-1302	6782-1302	6779-1302	6788-1302	6784-1302	-	6756-1302	6772-1302	100
0.2	-	6790-1302	-	6792-1302	6785-1302	6783-1302	-	6757-1302	6773-1302	500
0.2	-	6768-1302	-	6765-1302	-	6766-1302	-	6758-1302	6774-1302	2000
0.45	6771-1304	6789-1304	6782-1304	6779-1304	6788-1304	6784-1304	-	6756-1304	6772-1304	100
0.45	-	6790-1304	6781-1304	6792-1304	6785-1304	6783-1304	6818-1304	6757-1304	6773-1304	500
0.45	-	6768-1304	-	6765-1304	-	6766-1304	-	6758-1304	6774-1304	2000
1.0	-	-	-	-	-	6784-1310	-	-	-	100
5.0	-	-	-	-	-	6784-1350		-	-	100
GF/F 0.7*	-	-	-	-	-	-	6825-1307	-	-	100
GF/B 1.0*	-	-	-	-	-	-	6821-1310	-	-	100
GF/C 1.2*	-	-	-	-	-	-	6822-1312	-	-	100
GF/A 1.6*	-	-	-	-	-	-	6820-1316	-	-	100
GF/A 1.6	-	-	-		-	-	6806-1316	-	-	500
GF/D 2.7*	-	-	-	-	-	-	6823-1327	-	-	100
934-AH 1.5*	_	_	_	_	_	_	6827-1315	_	-	100

* Particle retention rating

CA—Cellulose acetate

GMF—Glass microfiber

PES—Polyethersulfone

PP—Polypropylene

PTFE—Polytetrafluoroethylene

PVDF—Polyvinylidene difluoride

RC—Regenerated cellulose

H-PTFE—Hydrophilic PTFE

Whatman Puradisc 13 mm syringe filters (sterile)

		Catalog number					
Pore size (µm)	PVDF	PES	RC	Quantity/pack			
Without tube tip							
0.2	6791-1302	6780-1302	10462940	50			
0.45	6791-1304	6780-1304	-	50			
With tube tip							
0.2	6778-1302	-	10462945	50			

PES—Polyethersulfone PVDF—Polyvinylidene difluoride

RC—Regenerated cellulose

Whatman Puradisc 25 mm syringe filters

					Catalog Numb	ber				
Pore size (µm)	Nylon	PES	PVDF	PP	PTFE	H-PTFE	GMF	DpPP	RC	Quantity/pack
Sterile										
0.2	-	6780-2502	-	-	-	-	-	-	-	50
0.2	-	6794-2512	-	-	-	-	-	-	-	1000
0.45	-	6780-2504	-	-	-	-	-	-	-	50
0.45	-	6794-2514	-	-	-	-	-	-	-	1000
1.0	-	6780-2510	-	-	-	-	-	-	-	50
Nonsterile										
0.1	-	-	-	-	6784-2501	-	-	-	-	50
0.1	-	-	-	-	6798-2501	-	-	-	-	1000
0.2	6750-2502	-	6746-2502	6786-2502	6784-2502	6772-2502	-	-	6756-2502	50
0.2	6751-2502	6781-2502	6747-2502	6788-2502	6785-2502	6773-2502	-	-	6757-2502	200
0.2	6753-2502	6794-2502	-	6790-2502	6798-2502	6774-2502	-	-	6758-2502	1000
0.45	6750-2504	-	6746-2504	-	6784-2504	6772-2504	-	6786-2504	6756-2504	50
0.45	6751-2504	6781-2504	6747-2504	-	6785-2504	6773-2504	-	6788-2504	6757-2504	200
0.45	6752-2504	-	-	-	-	-	-	-	-	500
0.45	6753-2504	6794-2504	6749-2504	-	6798-2504	6774-2504	-	6790-2504	6758-2504	1000
0.7 GF/F*	-	-	-	-	-	-	6825-2517	-	-	50
0.7 GF/F*	-	-	-	-	-	-	6825-2527	-	-	200
0.7 GF/F*	-	-	-	-	-	-	6787-2520	-	-	1000
1.0	6750-2510	-	-	-	6784-2510	-	-	-	-	50
1.0	6751-2510	6781-2510	-	-	-	-	-	-	-	200
1.0	6753-2510	6794-2510	-	-	6798-2510	-	-	-	-	1000
1.0 GD 1*	-	-	-	-	-	-	6783-2510	-	-	100
1.0 GD 1*	-	-	-	-	_	-	6792-2510	-	-	1000
2.0 GD 2*	-	-	-	-	-	-	6783-2520	-	-	100

* Particle retention rating

DpPP—Polypropylene depth filter GD—Graded density GMF—Glass microfiber H-PTFE = Hydrophilic PTFE PES—Polyethersulfone PP—Polypropylene PTFE—Polytetrafluoroethylene PVDF—Polyvinylidene difluoride RC = Regenerated cellulose

Whatman Puradisc 30 mm syringe filters

Media/housing	CA/PC	CN/ PC	PTFE / PP	RC/PP			
Pore size (µm)					Connection in/out	Quantity/pack	
0.2	10462200*	-	10463500*	-	FLL/ML	50	
0.2	10462701	-	-	10462960*	FLL/ML	50	
0.2	10462710	-	10463503	-	FLL/ML	100	
0.2	10462700	-	10463505	-	FLL/ML	500	
0.45	10462100*	-	-	10462950*	FLL/ML	50	
0.45	10462601	-	-	-	FLL/ML	50	
0.45	10462610	-	10463513	-	FLL/ML	100	
0.45	10462600	-	10463515	-	FLL/ML	500	
0.8	10462241	-	-	-	FLL/ML	50	
0.8	10462240*	-	-	-	FLL/ML	50	
0.8	10462243	-	-	-	FLL/ML	500	
1.0	-	-	10463523	-	FLL/ML	100	
1.0	-	-	10463525	-	FLL/ML	500	
1.2	10462260*	-	-	-	FLL/ML	50	
1.2	10462261	-	-	-	FLL/ML	50	
1.2	10462263	-	-	-	FLL/ML	500	
5.0	-	10462000*	-	-	FLL/ML	50	
5.0	-	10462520	-	-	FLL/ML	50	
5.0	-	10462510	10463533	-	FLL/ML	100	
5.0	-	10462500	10463535	-	FLL/ML	500	

* Sterile

CA—Cellulose acetate CN—Cellulose nitrate FLL—Female Luer lock ML—Male Luer MLL—Male Luer lock PC—Polycarbonate PP—Polypropylene RC—Regenerated cellulose

Whatman Anotop syringe filters

Anotop filters contain the proprietary alumina-based Anopore membrane and are supplied in three pore sizes. Anotop filters can be used with most organic solvents and aqueous materials.

Whatman Anotop 10

Features and benefits

- 10 mm diameter syringe filter
- Inorganic membrane
- Capillary pore structure
- Low protein binding
- Filters sample volume up to 10 mL
- Low hold-up volume < 20 µL ensures maximum sample recovery
- Sterile formats are available for critical applications

Whatman Anotop 25

Features

- 25 mm diameter syringe filter
- Filters sample volume up to 100 mL

Applications

- · Cold sterilization* of growth media
- Phage and virus filtration
- · Removal of high molecular weight proteins or polymers
- Liposome extrusion
- Filtration of solvents for spectroanalysis and analytical sample preparation

Anotop 10 syringe filters, sterile

* Refers to sterilization by filtration for small sample use which is an industry term for filters of pore size 0.2 µm or smaller as referenced in guidance such as EPA Guidance for Industry Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice Section IX, Part B (September 2004).

Technical specifications

Whatman Anotop syringe filters

	Anotop 10	Anotop 25	
Housing	Polypropylene	Polypropylene	
Filtration area	0.78 cm ²	4.78 cm ²	
Maximum pressure	100 psi (6.9 bar)	100 psi (6.9 bar)	
Volume hold-up	< 20 µL	< 150 µL	
Prefilter type	N/A	N/A	
Membrane diameter	10 mm	25 mm	
Membrane type	Anopore	Anopore	
Average membrane thickness	60 µm	60 µm	
Device width	15.4 mm	36.8 mm	
Device length	18.5 mm	26.3 mm	
Device shape	Hexagonal	Hexagonal	
Construction process	Thermal weld	Thermal weld	
Inlet connection	Female Luer lock	Female Luer lock	
Outlet connection	Male Luer	Male Luer	
Protein adsorption	Low	Low	
Extractable materials	Low	Low	
Cytotoxicity	Non-cytotoxic	Non-cytotoxic	

Whatman Anotop 25 syringe filters

1 20 Shu

Whatman Anotop syringe filters

Pore size (µm)	Media	Catalog number	Quantity/pack
Whatman Anotop 10			
0.02	Anopore	6809-1002	50
0.1	Anopore	6809-1012	50
0.2	Anopore	6809-1022	50
0.02	Anopore, sterile	6809-1102	50
0.1	Anopore, sterile	6809-1112	50
0.2	Anopore, sterile	6809-1122	50
Whatman Anotop 25			
0.02	Anopore	6809-2002	50
0.1	Anopore	6809-2012	50
0.2	Anopore	6809-2022	50
0.2	Anopore	6809-2024	200
0.02	Anopore, sterile	6809-2102	50
0.1	Anopore, sterile	6809-2112	50
0.2	Anopore, sterile	6809-2122	50

Difficult to filter

Whatman GD/X syringe filters

The Whatman GD/X[™] range is specifically designed for difficult to filter, high particulate loaded samples. Constructed of a pigment-free polypropylene housing with a prefiltration stack of Whatman GMF 150 (graded density) and GF/F glass microfiber media, these filters remove sample contamination and allow you to filter even the most difficult samples with less hand pressure. GD/X syringe filters can process three to seven times more sample volume than standard syringe filters.

GMF 150 and GF/F are produced from 100% borosilicate glass microfiber. Graded density GMF 150 medium has a coarse top layer meshed with a fine bottom layer that retains particles to 1.0 μ m. A GF/F filter then retains particles down to 0.7 μ m. The prefilter stack ends with a final membrane.

The filter construction facilitates exceptional loading capacity with fast flow rates. This prevents the build up of back pressure typically caused by the blocking of an unprotected membrane.

Features and benefits

- 13 mm devices for samples up to 10 mL and 25 mm devices for samples greater than 10 mL. The volume of sample that can be filtered through each filter depends on the characteristics of the sample.
- · Sterile options.
- Pigment-free polypropylene housing.
- Prefiltration stack of Whatman GMF 150 (graded density) and GF/F glass microfiber media.
- Minimizes sample contamination.
- Requires less hand pressure, even with the most difficult samples.
- Processes three to seven times more sample volume.

Applications

Whatman GD/X syringe filters are excellent for heavily particulate-laden samples found in:

- Dissolution testing
- Content uniformity testing
- Concentration analysis
- Routine sample preparation
- Food analysis
- Environmental samples
- Composite assay

Technical specifications

Whatman GD/X syringe filters

	GD/X 13 mm	GD/X 25 mm
Housing	Polypropylene (pigment free)	Polypropylene (pigment free)
Filtration area	1.3 cm ²	4.6 cm ²
Maximum pressure	100 psi (6.9 bar)	75 psi (5.2 bar)
Volume hold-up*—full housing	0.5 mL	1.4 mL
—with air purge	50 μL (approx)	250 μL (approx)
Dimensions*	20.8 × 30.0 mm	20.8 × 30.0 mm
Weight	3 g (approx)	3 g (approx)
Flow direction	Flow should enter from the inlet	Flow should enter from the inlet
Inlet connection	Female Luer lock	Female Luer lock
Outlet connection	Male Luer	Male Luer
Sterlization	Autoclave at 121ºC (131ºC max) at 15 psi (1 bar) for 20 min	Autoclave at 121°C (131°C max) at 15 psi (1 bar) for 20 min
Glass microfiber prefiltration media	100% borosilicate glass fiber GMF 150 10 μm: 1 μm GF/F 0.7 μm	100% borosilicate glass fiber GMF 150 10 μm: 1 μm GF/F 0.7 μm

* Housings are the same size but the filtration size is smaller

Whatman GD/X syringe filters

Pore size (µm)	Catalog number	Media	Quantity/pack
GD/X 13 mm—nonsterile			
0.2	6880-1302	CA	150
0.45	6880-1304	CA	150
0.2	6870-1302	Nylon	150
0.2	6871-1302	Nylon	1500
0.45	6870-1304	Nylon	150
0.45	6871-1304	Nylon	1500
0.2	6876-1302	PES	150
0.45	6876-1304	PES	150
0.2	6872-1302	PVDF	150
0.45	6872-1304	PVDF	150
0.45	6873-1304	PVDF	1500
0.2	6878-1302	PP***	150
0.45	6878-1304	PP***	150
0.2	6874-1302	PTFE	150
0.2	6875-1302	PTFE	1500
0.45	6874-1304	PTFE	150
0.45	6875-1304	PTFE	1500
1.6*	6882-1316	GF/A**	150
1.0*	6884-1310	GF/B**	150
1.2*	6886-1312	GF/C**	150
2.7*	6888-1327	GF/D**	150
0.7*	6890-1307	GF/F**	150
0.45*	6894-1304	GMF	150
GD/X 25 mm–nonsterile			
0.45	6882-2504	RC	150
0.2	6888-2502	RC	1500
0.45	6883-2504	RC	1500
0.2	6880-2502	CA	150
0.45	6880-2504	CA	150
0.45	6881-2504	CA	1500
0.2	6869-2502	Nylon high charge (positive)	150
0.45	6869-2504	Nylon high charge (positive)	150
0.2	6870-2502	Nylon	150
0.2	6871-2502	Nylon	1500
0.45	6870-2504	Nylon	150

* Glass microfiber particle retention rating

CA—Cellulose acetate

** Contains GMF 150 without the GF/F prefilter

*** Mildly hydrophobic

GF—Glass fiber GMF - Glass microfiber PES—Polyethersulfone PP—Polypropylene PTFE—Polytetrafluoroethylene PVDF—Polyvinylidene difluoride RC—Regenerated cellulose

Whatman GD/X syringe filters

Pore size (µm)	Catalog number	Media	Quantity/pack	
GD/X 25 mm—nonsterile (continuat	tion)			
0.45	6871-2504	Nylon	1500	
5.0	6870-2550	Nylon	150	
5.0	6871-2550	Nylon	1500	
0.2	6876-2502	PES	150	
0.2	6905-2502	PES	1500	
0.45	6876-2504	PES	150	
0.45	6905-2504	PES	1500	
0.2	6872-2502	PVDF	150	
0.2	6873-2502	PVDF	1500	
0.45	6872-2504	PVDF	150	
0.45	6873-2504	PVDF	1500	
0.2	6878-2502	PP	150	
0.45	6878-2504	PP	150	
0.45	6879-2504	PP	1500	
0.2	6874-2502	PTFE	150	
0.2	6875-2502	PTFE	1500	
0.45	6874-2504	PTFE	150	
0.45	6875-2504	PTFE	1500	
1.6*	6882-2516	GF/A**	150	
1.6*	6883-2516	GF/A**	1500	
1.0*	6884-2510	GF/B**	150	
1.2*	6886-2512	GF/C**	150	
2.7*	6888-2527	GF/D**	150	
0.7*	6890-2507	GF/F**	150	
0.7*	6891-2507	GF/F**	1500	
0.45*	6894-2504	GMF**	150	
0.45*	6895-2504	GMF**	1500	
1.5*	6892-2515	934-AH**	150	
GD/X 25 mm–sterile				
0.2	6896-2502	PES	50	
0.45	6896-2504	PES	50	
0.2	6900-2502	PVDF	50	
0.45	6900-2504	PVDF	50	
0.45*	6902-2504	GMF**	50	
0.2	6901-2502	CA	50	
0.45	6901-2504	СА	50	
* Glass microfiber particle retention rating	CA—Cellulose acetate	PP-Polvpro	ppylene	

Glass microfiber particle retention rating

** Contains GMF 150 without the GF/F prefilter

*** Mildly hydrophobic

GF—Glass fiber GMF - Glass microfiber PES—Polyethersulfone PP—Polypropylene PTFE—Polytetrafluoroethylene PVDF—Polyvinylidene difluoride RC—Regenerated cellulose

Whatman GD/XP syringe filters

Whatman GD/XP disposable syringe filters are suitable for use with samples that require inorganic ion analysis, as levels of ion extractables are minimized. They are also an alternative choice for users requiring a filter that exhibits extremely low protein binding characteristics.

GD/XP syringe filters contain a two-layer prefilter stack comprised of 20 µm and 5 µm polypropylene filters. The last stage of filtration is by membrane, which is positioned below the prefilter stack.

Applications

- HPLC sample preparation
- Trace metal analysis
- · Sample preparation prior to determination of dissolved heavy metals

Technical specifications

Whatman GD/XP syringe filters

	GD/X 13 mm
Housing	Polypropylene (pigment free)
Filtration area	4.6 cm ²
Maximum pressure	75 psi (5.2 bar)
Volume hold-up full housing with air purge	1.4 mL 250 μL (approx)
Dimensions	20.8 × 30.0 mm
Weight	3 g (approx)
Flow direction	Flow should enter from the inlet
Inlet connection	Female Luer lock
Outlet connection	Male Luer
Sterlization	Autoclave at 121°C (131°C max) at 15 psi (1 bar) for 20 min
Prefiltration media	PP 20 μm: 5 μm

GD/XP syringe filters

Diameter (mm)	Pore size (µm)	Catalog number	Media	Hydrophilic	Quantity/pack
25	0.45	6970-2504	Nylon	Yes	150
25	0.45	6971-2504	Nylon	Yes	1500
25	0.45	6994-2504	PES	Yes	150
25	0.45	6995-2504	PES	Yes	1500
25	0.45	6972-2504	PVDF	Yes	150
25	0.45	6973-2504	PVDF	Yes	1500
25	0.45	6978-2504	PP	No	150
25	0.45	6992-2504	DpPP	No	150
25	0.45	6974-2504	PTFE	No	150
25	0.45	6993-2504	DpPP	No	1500

DpPP—Polypropylene depth filter

PES—Polyethersulfone

PP—Polypropylene

PVDF—Polyvinylidene difluoride

PTFE—Polytetrafluoroethylene

Whatman Puradisc Plus

The Whatman Puradisc Plus range of syringe filters has been designed for the prefiltration of difficult-to-filter aqueous or organic solutions containing particles.

Ordering information

Whatman Puradisc Plus

Diameter (mm)	Pore size um	Catalog number	Media/housing	Connection (in/out)	Color code	Quantity/pack
30	> 1.0	10463545	GF92/PP	FLL/ML	Natural	500
30	> 1.0	10463543	GF92/PP	FLL/ML	Natural	100

FLL—Female Luer lock

GF—Glass fiber ML—Male Luer

PP—Polypropylene

Whatman Anotop 10 and Whatman Anotop 25 Plus

The Whatman Anotop Plus syringe filter offers the added benefit of an integral glass microfiber prefilter. This unit enables difficult and hard-to-filter solutions to be filtered without adversely affecting the filtration efficiency of the final membrane. This can remove the need for sample clean-up or expensive and time-consuming sequential filtration.

Applications

- Filtration of tissue culture media
- Clean-up of difficult samples
- Filtration of colloidal material
- Removal of mycoplasma
- HPLC sample preparation
- Biological sample preparation

Whatman Anotop Plus syringe filters

Whatman Anotop syringe filters

	Anotop 10 Plus	Anotop 25 Plus	
Housing	Polypropylene	Polypropylene	
Filtration area	0.78 cm ²	4.78 cm ²	
Maximum pressure	100 psi (6.9 bar)	100 psi (6.9 bar)	
Volume hold-up	< 30 µL	< 200 µL	
Prefilter type	Glass microfiber (binderless)	Glass microfiber (binderless)	
Membrane diameter	10 mm	25 mm	
Membrane type	Anopore	Anopore	
Average membrane thickness	60 µm	60 µm	
Device width	15.4 mm	36.8 mm	
Device length	18.5 mm	26.3 mm	What
Device shape	Hexagonal	Hexagonal	
Construction process	Thermal weld	Thermal weld	
Inlet connection	Female Luer lock	Female Luer lock	
Outlet connection	Male Luer	Male Luer	
Protein adsorption	Medium/High	Medium/High	
Extractable materials	Low	Low	
Cytotoxicity	Non-cytotoxic	Non-cytotoxic	

Whatman Anotop 25 Plus Syringe Filters

Ordering information

Whatman Anotop syringe filters

Pore size (µm)	Media	Catalog number	Quantity/pack
Anotop 10 Plus			
0.02	Anopore with prefilter	6809-3002	50
0.1	Anopore with prefilter	6809-3012	50
0.2	Anopore with prefilter	6809-3022	50
0.02	Anopore with prefilter, sterile	6809-3102	50
0.1	Anopore with prefilter, sterile	6809-3112	50
0.2	Anopore with prefilter, sterile	6809-3122	50
Anotop 25 Plus			
0.02	Anopore with prefilter	6809-4002	50
0.1	Anopore with prefilter	6809-4012	50
0.2	Anopore with prefilter	6809-4022	50
0.02	Anopore with prefilter, sterile	6809-4102	50
0.1	Anopore with prefilter, sterile	6809-4112	50
0.2	Anopore with prefilter, sterile	6809-4122	50
0.2	Anopore with prefilter	6809-4024	200

Filters for automated systems

Whatman Roby 25 for robotic systems

Whatman Roby 25 syringe filters for robotic systems were developed specifically for automated sample filtration and are available with various membranes. For difficult-to-filter samples, Whatman Roby syringe filters are also available with an integral glass fiber prefilter.

The filter housing is made from mechanically stable polypropylene. The external geometry of the filter housing ensures simple and smooth filter transport from the storage turntable to the filtration site and easy filter changing.

Features and benefits

- · Optimized for automatic dissolution test systems
- Mechanically stable polypropylene
- Easy filter changing ٠
- Ensures simple and smooth filter transport

Applications

- · Fine filtration of samples in the automatic tablet dissolution test
- Method development with the Whatman Roby 25 Filter Validation Kit

Whatman Roby 25 Filter Validation Kit

The Whatman Roby 25 Filter Validation Kit includes step-by-step instructions for essential selection tests. Instructions include all important properties in an at-a-glance format.

Features

- Six types of filters: six tubes each with 25 filters
- Filter validation protocol with filter selection aid

Whatman Roby 25 fillters

Ordering information

Whatman Roby 25 syringe filters for automation

Diameter (mm)	Pore size (µm)	Description	Catalog number	Media/ housing	Connection in/out	Color code	Quantity/ pack
25	0.45	Roby 25 NL	10463803	NYL/PP	FLL/ML	Translucent yellow	200 ¹
25	0.45	Roby 25 NL	10463802	NYL/PP	FLL/MLL	-	1000
25	0.45	Roby 25 NL-GF92	10463805	NYL-GF/PP	FLL/ML	Yellow	200 ¹
25	0.45	Roby 25 NL-GF92	10463804	NYL-GF/PP	FLL/ML	Yellow	1000
25	0.45	Roby 25 RC	10463806	RC/PP	FLL/MLL	-	1000
25	0.45	Roby 25 RC-GF92	10463809	RC-GF/PP	FLL/ML	Brown	200 ¹
25	0.45	Roby 25 RC-GF92	10463808	RC-GF/PP	FLL/MLL	-	1000
25	0.7	Roby 25/GF55	10463814	GF/PP	FLL/ML	Natural	200 ¹
25	0.7	Roby 25/GF55	10463815	GF/PP	FLL/ML	Natural	1000
25	1.0	Roby 25/GF92	10463801	GF/PP	FLL/ML	Natural	200 ¹
25	1.0	Roby 25/GF92	10463800	GF/PP	FLL/ML	Natural	1000
25	_	Filter Validation Kit ²	10463898	-	FLL/ML	_	1

¹ 8 tubes with 25 pieces each

² Filter Validation Kit includes: Roby 25 NL; Roby 25 NL-GF92; Roby 25/RC; Roby 25/RC-GF92; Roby 25/GF95; Roby 25/GF92

ML—Male Luer

FLL—Female Luer lock

NYL-Nylon

PP—Polypropylene

RC—Regenerated cellulose

Whatman 850-DS Channel Filter Plate

The Whatman 850-DS 8-Channel Filter Plate is a disposable plate for use in the Agilent™ 850-DS Dissolution Sampling Station, used for automated sample preparation in dissolution testing.

Automated dissolution sample preparation for increased productivity

The filter plates are exclusively designed for use with the optional filter module on the Agilent 850-DS Dissolution Sampling Station to simplify filter replacement between timepoints. Reliable alignment of the liquid path increases productivity in two ways: First, by reducing the risk of jamming, and second, by reducing leaks that may occur with manual sampling or other dissolution sample preparation systems.

Save time and eliminate errors associated with manual sampling. Use Whatman 850-DS 8-channel filter plates in your Agilent 850-DS Dissolution Sampling Station.

- Automated processing: up to 8 samples simultaneously
- Readily available: in a wide range of pore sizes and materials

Whatman 850-DS 8-channel filter plates have been developed in conjunction with Agilent. They are available in a wide range of pore sizes and materials.

Ordering information

Whatman 850-DS 8-Channel Filter Plate

Pore size (µm)	Media	Catalog number	Quantity / pack
0.45	PTFE	7707-3000	50
0.45	Nylon	7707-3100	50
0.45	PES	7707-3200	50
0.7	GMF	7707-3300	50
0.2	PTFE	7707-3400	50
0.2	Nylon	7707-3500	50
0.2	PES	7707-3600	50
0.2	PVDF	7707-3700	50
0.45	PVDF	7707-3800	50
1.0	GMF	7707-3900	50

Whatman 850-DS 8-Channel Filter Plate

Application Specific Syringe Filters

Whatman Puradisc Aqua

Whatman Puradisc Aqua syfinge filters are specifically designed for filtration of environmental samples prior to Chemical Oxygen Demand (COD) and Dissolved Organic Carbon (DOC) analysis. The membranes used in these devices are prewashed prior to assembly of the filters to reduce the organic carbon level.

Ordering information

Whatman Puradisc Aqua syringe filters

Pore size (µm)	Catalog number	Media/housing	Connection in/out	Color code	Quantity/pack
0.45	10462656	CA/PC	FLL/ML	White	50
0.45	10462655	CA/PC	FLL/ML	White	100
0.45	10462650	CA/PC	FLL/ML	White	500

CA—Cellulose acetate PC—Polycarbonate

FLL—Female Luer lock

ML—Male Luer

Whatman Anotop IC

Whatman Anotop IC syringe filters for the preparation of samples for subsequent ion chromatography (IC) and HPLC analysis ensure very low levels of anion leaching.

Features and benefits

- 10 mm and 25 mm diameter syringe filters
- Each batch certified for IC
- Enhanced consistency of analytical results
- Extended column life
- · Certified low levels of anion leaching for improved results

Applications

- Ion chromatography sample preparation
- HPLC sample preparation

Whatman Puradisc Aqua

23

Anotop IC syringe filter

Whatman Anotop LC

Use Whatman Anotop LC syringe filters for simple and effective preparation of samples prior to HPLC. These syringe filters preserve the life of your column by efficiently removing particulates from your analytical samples. Because the Anotop LC syringe filter is made from pigment-free polypropylene and the Anopore inorganic membrane, you can be sure that after filtration the level of extractable UV absorbing compounds is minimal.

Features

- Better consistency of analytical results and longer column life
- Extremely low levels of UV absorbing compounds for better HPLC results
- Easy to use with a wide range of sample types

Anotop LC syringe filter

Technical specifications

Whatman Anotop syringe filters

	Anotop 10 IC	Anotop 10 LC	Anotop 25 IC	Anotop 25 LC
Housing	Polypropylene	Polypropylene (pigment free)	Polypropylene	Polypropylene (pigment free)
Filtration area	0.78 cm ²	0.78 cm ²	4.78 cm ²	4.78 cm ²
Maximum pressure	100 psi (6.9 bar)	100 psi (6.9 bar)	100 psi (6.9 bar)	100 psi (6.9 bar)
Volume hold-up with air purge	< 20 µL	< 20 µL	< 150 µL	< 150 μL
Membrane diameter	10 mm	10 mm	25 mm	25 mm
Construction process	Thermal weld	Thermal weld	Thermal weld	Thermal weld
Extractable materials	Negligible	Negligible	Negligible	Negligible
Average membrane thickness	60 µm	60 µm	60 µm	60 µm
Device width	15.4 mm	15.4 mm	36.8 mm	36.8 mm
Device length	18.5 mm	18.5 mm	26.3 mm	26.3 mm
Inlet connection	Female Luer lock	Female Luer lock	Female Luer lock	Female Luer lock
Outlet connection	Male Luer	Male Luer	Male Luer	Male Luer
Membrane type	Anopore	Anopore	Anopore	Anopore

Whatman Anotop IC syringe filters

Anion	Level (ppb)	Anion	Level (ppb)
Fluoride	< 10	Phosphate	< 75
Chloride	< 15	Nitrite	< 30
Bromide	< 20	Nitrate	< 30
Sulfate	< 30	-	-

Typical average anion leaching levels in 18 M Ω × cm (MegaOhm × cm) water at 20°C

Ordering information

Whatman Anotop IC and Whatman Anotop LC syringe filters

Pore size (µm)	Membrane	Catalog number	Quantity / pack
Whatman Anotop 10 IC			
0.2	Anopore	6809-9233	100
0.2	Anopore	6809-9234	200
Whatman Anotop 25 IC			
0.2	Anopore	6809-9244	200
Whatman Anotop 10 IC blister			
0.2	Anopore	6809-9232	50
0.2	Anopore	6809-9235	250
Whatman Anotop 10 LC			
0.2	Anopore	2001-0100	100
0.2	Anopore	2001-0200	200
Whatman Anotop 25 LC			
0.2	Anopore	2002-5100	100
0.2	Anopore	2002-5200	200

Whatman SPARTAN HPLC certified syringe filters

Whatman SPARTAN™ syringe filters ensure reproducible results from the filtration of organic or aqueous solutions for HPLC. For batch-to-batch consistency, the Whatman SPARTAN range of filters is tested and certified for the absence of UV-absorbing substances at wavelengths of 210 and 254 nm with water, methanol, and acetonitrile.

Features and benefits

- Ready-to-use filter unit with a hydrophilic, low protein-binding membrane made of regenerated cellulose.
- Excellent chemical resistance against the standard aqueous and organic HPLC solvents.
- 13 mm diameter with extremely low dead volume < 10 μL.
- Use for any application requiring a chemically resistant, hydrophilic, low protein- binding membrane.
- Documented batch-to-batch quality and consistency ensure reproducible results.
- 13 mm diameter with Mini-Tip outlet is excellent for filtration into very small sample bottles.

Applications

FLL—Female Luer lock

MI – Male Luer

- Filtration of organic and aqueous solutions in HPLC with reproducible results
- Purification of aqueous and organic solutions
- Filtration of protein solutions

Ordering information

Whatman SPARTAN HPLC certified syringe filters

PP-Polypropylene

RC-Regenerated cellulose

Diameter (mm)	Pore size (µm)	Catalog number	Membrane/ housing material	Connection (in/out)	Color code	Quantity/pack
13	0.2	10463040	RC/PP	FLL/Mini-tip	Dark brown	100
13	0.2	10463042	RC/PP	FLL/Mini-tip	Dark brown	500
13	0.2	10463100	RC/PP	FLL/ML	Dark brown	100
13	0.2	10463102	RC/PP	FLL/ML	Dark brown	500
13	0.45	10463030	RC/PP	FLL/Mini-tip	Light brown	100
13	0.45	10463032	RC/PP	FLL/Mini-tip	Light brown	500
13	0.45	10463110	RC/PP	FLL/ML	Light brown	100
13	0.45	10463112	RC/PP	FLL/ML	Light brown	500
30	0.2	10463062	RC/PP	FLL/ML	Dark brown	500
30	0.45	10463053	RC/PP	FLL/ML	Light brown	50
30	0.45	10463052	RC/PP	FLL/ML	Light brown	500

Technical tip

Download your Whatman SPARTAN 13 and 30 batch certificate from the Internet to document the purity of each batch.

To download, visit *cytiva.com/ support/quality/certificates*. Enter the lot number, and you will receive the lot-specific chromatogram and test conditions.

Whatman SPARTAN 30 mm syringe filter

Whatman Protein Prep syringe filter for ÄKTA systems

Sample preparation with the Whatman Protein Prep syringe filter for ÄKTA systems

Filtration devices – Application Specific Syringe Filters

Ordering information

Whatman Protein Prep syringe filter for ÄKTA systems

Diameter	Pore size (µm)	Catalog number	Quantity/pack
13	0.2	150	10463103
13	0.45	150	10463113
30	0.2	150	10463043
30	0.45	150	10463033

154

All-in-one filters and filter vials

Whatman all-in-one syringeless filters and filter vials are preassembled, convenient filtration devices for removing particulates from samples. They replace syringe-coupled filtration devices with a single disposable unit, making sample preparation easier, faster, and more efficient.

Whatman Mini-UniPrep integrated syringeless filters and filter vials

The Whatman Mini-UniPrep[™] preassembled filtration device consists of a 0.4 mL capacity chamber and a plunger. The plunger contains a filtration membrane at one end and a preattached cap and septum at the other. The plunger is pressed through the sample in the outer chamber and positive pressure forces the filtrate into the reservoir of the plunger. Air escapes through the vent hole until the locking ring is engaged, providing an air-tight seal. Within seconds, the Whatman Mini-UniPrep can be placed into any autosampler able to contain 2 mL vials for injection into your instrument.

The device can be used either manually or with a compressor unit. The multicompressor can process up to six samples at one time, further improving sample processing time and reducing the risk of hand stress. The Whatman Mini-UniPrep device is designed to fit into any autosampler accommodating 12 × 32 mm vials. Alternatively, the septum can be pierced with a needle and the sample drawn off for manual injection into an analyzer.

Features and benefits

- · All-in-one filtration process allows you to process sample loads in one-third of the time.
- Wide range of membrane choices from 0.2 and 0.45 µm pore sizes to meet specific sample application requirements.
- · Compatible with most major autosamplers.
- Fewer consumables are required, reducing costs by up to 40%.

Applications

- Routine HPLC/UHPLC analysis
- Composite assays
- · Content uniformity
- Protein precipitation
- · Solubility testing
- Dissolution testing
- Sample filtration

A variety of Mini-UniPrep filters to meet your needs

- Amber Whatman Mini-UniPrep is available for customers who need to filter light-sensitive samples.
- Slit septa Whatman Mini-UniPrep is available for customers using robotics to maximize throughput.

Whatman Mini-UniPrep syringeless filters

Amber Whatman Mini-UniPrep filter vial

Protects samples from UV damage

Features and benefits

- Amber colorant prevents photodegradation of light sensitive samples.
- Same colorant used in pharmaceutical containers designed to meet United States Pharmacopeia specifications for light resistance.
- Translucent amber chamber and plunger enable easy visual inspection.

Applications

• Use with any compound that requires protection from light, such as catecholamines or vitamins.

Slit septa Whatman Mini-UniPrep filter vial

For high-throughput automation

Features and benefits

- Slit septum cap enables Whatman Mini-UniPrep use with current robotics on HPLC instruments for high throughput automation.
- Durable yet flexible slit septum cap has been specially designed for instruments with sensitive sampling needs. Sample evaporation is minimal.
- Pre-slit septa allows easier needle penetration.

Applications

• Use with standard robotics on HPLC instruments with sensitive needles, allowing for higher throughput.

Whatman Mini-UniPrep multi-compressor

Whatman Mini-UniPrep multi-compressor tray

Whatman Mini-UniPrep in an HPLC autosampler

Whatman Amber Mini-UniPrep filter vial

Selection

Whatman Mini-UniPrep filtering media

Sample type	Suitable Mini-UniPrep media		
High particulate laden liquids	Glass microfiber (GMF)		
Aqueous/organic samples in 3 to 10 pH range	Nylon (NYL)		
General filtration media/solvent based samples	Polypropylene (PP)		
Chemically aggressive solutions	Polytetrafluoroethylene (PTFE)		
Biological samples requiring low protein binding media	Regenerated cellulose (RC) or polyethersulfone (PES)		
Aqueous/organic solvents, low nonspecific protein binding media	Polyvinylidene difluoride (PVDF) or regenerated cellulose (RC)		
Aqueous/organic solvents, high flow and loading capacity	Polypropylene depth filter, non-woven PP fibers		

Technical specifications

Whatman Mini-UniPrep integrated syringeless filters and filter vials

Sample type	Suitable Mini-UniPrep media		
Dimensions	Equivalent in size to 12 × 32 mm vials		
Materials of construction Housing and cap Filter media Septa	Polypropylene As specified PTFE coated silicone rubber		
Filtering capacity	0.4 mL		
Nominal force needed to compress	Approximately 18 lbs/8.2 kg		
Maximum operating temperature	120°F (50°C)		

Ordering information

Whatman Mini-UniPrep integrated syringeless filters and filter vials

Pore size (µm)	Catalog number	Media	Quantity/pack	
Standard cap—translucent housing				
0.2	UN203NPENYL	Nylon	100	
0.2	UN503NPENYL	Nylon	1000	
0.45	UN203NPUNYL	Nylon	100	
0.45	UN503NPUNYL	Nylon	1000	
0.2	UN203NPEPES	PES	100	
0.45	UN203NPUPES	PES	100	
0.45	UN503NPUPES	PES	1000	
0.2	UN203NPEAQU	PVDF	100	
0.2	UN503NPEAQU	PVDF	1000	
0.45	UN203NPUAQU	PVDF	100	
0.45	UN503NPUAQU	PVDF	1000	
0.2	UN203NPERC	RC	100	
0.2	UN503NPERC	RC	1000	
0.45	UN203NPURC	RC	100	
0.45	UN503NPURC	RC	1000	
0.2	UN203NPEORG	PTFE	100	
0.2	UN503NPEORG	PTFE	1000	
0.45	UN203NPUORG	PTFE	100	
0.45	UN503NPUORG	PTFE	1000	
0.2	UN203NPEPP	PP	100	
0.2	UN503NPEPP	PP	1000	
0.45	UN203NPUPP	PP	100	
0.45	UN503NPUPP	PP	1000	
0.45	UN203NPUDPP	DpPP	100	
0.45	UN503NPUDPP	DpPP	1000	
0.45	UN203NPUGMF	GMF	100	
0.45	UN503NPUGMF	GMF	1000	
Accessories: multi-compressor				
-	MUPMCPBC8	Mini-UniPrep multi-compressor 1/pac	k comes with one tray	
-	MUPMCBT8	Mini-UniPrep multi-compressor tray 1	/pack	
PES—Polyethersulfone PTFE—Polytetrafluoroethylene PVDF—Polyvinylidene difluoride	RC—Regenerated cellulose DpPP—Polypropylene depth filter GMF—Glass microfiber	PP—Polypropylene		

Ordering information

Whatman Mini-UniPrep integrated syringeless filters and filter vials (continuation)

Pore size (µm)	Catalog number	Media	Quantity/pack	
Slit septum cap, transluce	nt housing			
0.2	US203NPENYL	Nylon	100	
0.2	US503NPENYL	Nylon	1000	
0.45	US203NPUNYL	Nylon	100	
0.2	US203NPEPES	PES	100	
0.2	US503NPEPES	PES	1000	
0.45	US203NPUPES	PES	100	
0.2	US203NPEAQU	PVDF	100	
0.2	US503NPEAQU	PVDF	1000	
0.45	US203NPUAQU	PVDF	100	
0.45	US503NPUAQU	PVDF	1000	
0.2	US203NPEORG	PTFE	100	
0.2	US503NPEORG	PTFE	1000	
0.45	US203NPUORG	PTFE	100	
0.45	US503NPUORG	PTFE	1000	
0.2	US203NPEPP	PP	100	
0.2	US503NPEPP	PP	1000	
0.45	US203NPUPP	PP	100	
0.45	US503NPUPP	PP	1000	
0.45	US203NPUDPP	DpPP	100	
0.45	US503NPUDPP	DpPP	1000	
0.45	US203NPUGMF	GMF	100	
0.45	US503NPUGMF	GMF	1000	
Amber housing (for light se	ensitive samples), standard cap			
0.2	UN203APENYL	Nylon	100	
0.45	UN203APUNYL	Nylon	100	
0.2	UN203APEPES	PES	100	
0.45	UN203APUPES	PES	100	
0.2	UN203APEAQU	PVDF	100	
0.45	UN203APUAQU	PVDF	100	
0.2	UN203APEORG	PTFE	100	
0.45	UN203APUORG	PTFE	100	
0.2	UN203APEPP	PP	100	
0.45	UN203APUPP	PP	100	
0.45	UN203APUDPP	DpPP	100	
0.45	UN203APUGMF	GMF	100	
Amber housing (for light se	ensitive samples), slit septum cap			
0.45	US203APUNYL	Nylon	100	
PES—Polyethersulfone	RC—Regenerated cellulose	PP—Polypropylene		

PTFE—Polytetrafluoroethylene PVDF—Polyvinylidene difluoride

RC—Regenerated cellulose DpPP—Polypropylene depth filter GMF—Glass microfiber GMF—Glass microfiber

PP—Polypropylene

Filtration devices – All-in-one filters and filter vials

Whatman Mini-UniPrep G2 integrated syringeless filters and glass vials

The Whatman Mini-UniPrep G2 includes an integral borosilicate glass vial housed within the plunger and a borosilicate glass chamber for holding the unfiltered liquid. It offers the same great Mini-UniPrep performance while minimizing the risk of extractable compounds from a plastic housing that might otherwise leach into your sample.

Technical specifications

Whatman Mini-UniPrep G2 integrated syringeless filters and glass vials

Dimensions	Once compressed, equivalent in size to 12 mm × 32 mm vial
Materials of construction	Chamber: Borosilicate glass
	Polypropylene (PP)
	Polytetrafluoroethylene (PTFE)
	Regenerated cellulose (RC) or polyethersulfone (PES)
	Polyvinylidene difluoride (PVDF) or regenerated cellulose (RC)
	Polypropylene depth filter, non-woven PP fibers
Maximum operating temp.	50°C (122°F)
Filtering capacity	Chamber (unfiltered sample): 500 µL
	Inner storage vial (filtered sample): 330 µL
	Recommended minimum filtering volume: 220 μL placed in the chamber to obtain 50 μL in inner storage vial
Nominal force needed to compress	Approx. 11.3 kg (25 lbs)
Autosampler compatibility	Any autosampler that accommodates standard 12 mm × 32 mm profile vials
Autosampler needle height adjustment	5 mm from bottom of Mini-UniPrep G2.

Liquid storage capacity

Volume (µL)	Height of liquid in inner glass reservoir (mm)
50	4.3
100	7.0
150	10.3
200	12.4
250	15.4
300	18.4
350	21.4
410 (max.)	25.0

Ordering information

Whatman Mini-UniPrep G2 integrated syringeless filters and glass vials

Pore size (µm)	Membrane	Housing	Сар	Catalog number, 100 pack	Catalog number, 1000 pack	Catalog number, starter pack*
0.2	PTFE	Translucent	Normal	GN203NPEORG	GN503NPEORG	GN203NPEORGSP
0.2	PTFE	Translucent	Slit septum	GS203NPEORG	GS503NPEORG	GS203NPEORGSP
0.2	PTFE	Amber	Normal	GN203APEORG	-	GN203APEORGSP
0.45	PTFE	Translucent	Normal	GN203NPUORG	GN503NPUORG	GN203NPUORGSP
0.45	PTFE	Translucent	Slit septum	GS203NPUORG	GS503NPUORG	GS203NPUORGSP
0.2	PVDF	Translucent	Normal	GN203NPEAQU	GN503NPEAQU	GN203NPEAQUSP
0.2	PVDF	Translucent	Slit septum	GS203NPEAQU	GS503NPEAQU	GS203NPEAQUSP
0.2	PVDF	Amber	Normal	GN203APEAQU	-	GN203APEAQUSP
0.45	PVDF	Translucent	Normal	GN203NPUAQU	GN503NPUAQU	GN203NPUAQUSP
0.45	PVDF	Translucent	Slit septum	GS203NPUAQU	GS503NPUAQU	GS203NPUAQUSP
0.2	RC	Translucent	Normal	GN203NPERC	GN503NPERC	GN203NPERCSP
0.45	RC	Translucent	Normal	GN203NPURC	GN503NPURC	GN203NPURCSP
0.2	Nylon	Translucent	Normal	GN203NPENYL	GN503NPENYL	GN203NPENYLSP
0.2	Nylon	Translucent	Slit septum	GS203NPENYL	GS503NPENYL	GS203NPENYLSP
0.2	PP	Translucent	Normal	GN203NPEPP	GN503NPEPP	GN203NPEPPSP
0.2	PP	Translucent	Slit septum	GS203NPEPP	-	GS203NPEPPSP
0.45	Glass fiber	Translucent	Normal	GN203NPUGMF	GN503NPUGMF	GN203NPUGMFSP
0.45	Glass fiber	Translucent	Slit septum	GS203NPUGMF	-	GS203NPUGMFSP
Hand compressor						
Mini-UniPrep G2 hand compressor 1/pack MUPG2HCPWC1					MUPG2HCPWC1	
Multi-compressor						
Mini-UniPrep G2 multi-	Mini-UniPrep G2 multi-compressor 1/pack, comes with one tray MUPG2MCPWC8					MUPG2MCPWC8
Mini-UniPrep G2 multi-	Mini-UniPrep G2 multi-compressor tray 1/pack MUPG2MCWT8					MUPG2MCWT8

Starter pack includes 100 filters with hand compressor

PTFE—Polytetrafluoroethylene

PVDF—Polyvinylidene difluoride

RC—Regenerated cellulose

PP—Polypropylene

Whatman UniPrep filter vials

Whatman UniPrep[™] filter vials are preassembled filtration devices for the filtration and storage of laboratory samples. These devices are quick and easy to use and feature a plunger, filter, and vial in one unit. They replace syringe-coupled filtration devices with single, disposable units.

Whatman UniPrep devices consist of two parts: a test tube and a filter-plunger. The design incorporates a prefilter and a membrane into the tip of the plunger. When the filter-plunger is pressed through the liquid placed in the test tube, positive pressure forces the filtrate up into the reservoir of the filter-plunger.

Whatman UniPrep devices function in a similar way to the Whatman Mini-UniPrep. However, Whatman UniPrep does not contain a septum in the cap and can be used to filter larger volumes (1 to 5 mL).

Features and benefits

- Integral storage vial saves time and minimizes laboratory waste.
- · Built-in glass fiber prefilter means even difficult samples are quick and easy to prepare.
- Choice of membranes for wide sample compatibility.

Applications

- Sample preparation (e.g. prior to preparative HPLC)
- Difficult-to-filter samples
- Quick filtration of samples

The Whatman UniPrep filter vial is selected based on compatibility with the sample in use. In manual operation, the tip is brought into contact with the liquid, and then the filter plunger is slowly pushed into the test tube until it stops at the bottom. The Whatman UniPrep is emptied either by decanting into a sample or autosampler vial or by drawing the filtered sample into a syringe for manual injection into an instrument.

Whatman UniPrep membranes are available in a range of media for various applications.

- **GMF:** Layered glass microfiber depth filter for use with samples containing aqueous or organic solvents (indicated pore size is the particle retention rating)
- NYL: Naturally hydrophilic membrane for filtration of samples containing aqueous or organic solvents with a pH range of 3-10
- PTFE: Chemically inert PTFE membrane for filtration of samples containing > 50% organic solvent
- PVDF: Low protein binding membrane for filtration of samples with aqueous or aqueous/organic solvent composition

Whatman UniPrep Syringeless Filters

Whatman UniPrep filter vials

Housing	Polypropylene
Filtration area	0.3 cm ²
Capacity	1-5 mL
Volume hold-up	50 μL
Prefilter	Glass fiber
Sterilization	Autoclave: 121°C at 15 psi (1 bar) for 20 min

Ordering information

Whatman UniPrep filter vials

Pore size (µm)	Catalog number	Media	Quantity/pack
0.2	UN113ENYL	Nylon	50
0.45	UN113UNYL	Nylon	50
0.45	UN113UAQU	PVDF	50
0.45	UN513UAQU	PVDF	1000
0.2	UN113EORG	PTFE	50
0.45	UN113UORG	PTFE	50
0.45	UN513UORG	PTFE	1000
0.45*	UN113UGMF	GMF	50

* Particle retention rating

GMF—Glass microfiber

PTFE—Polytetrafluoroethylene

PVDF—Polyvinylidene difluoride

Whatman Autovial filter vials

Whatman Autovial™ filter vials are preassembled filtration devices for removing particulates from samples. They replace syringe-coupled filtration devices with single, disposable units.

Whatman Autovial devices are comprised of two parts: a graduated filter barrel and a plunger. The proven design features an integral filter, built-in air purge and a support stand that protects the recessed slip-Luer tip. They are available in a 5 mL and 12 mL volume capacity.

The Whatman Autovial filter is selected according to membrane compatibility with the sample. In practice, the sample is poured into the 5 mL or 12 mL capacity filter barrel. A plunger is inserted into the barrel until the bottom is securely in place; there is a gap of air between the sample and plunger. Then, the tip of the Autovial is placed into the mouth of an autosampler vial or container and the plunger compressed. Filtration begins immediately. As the plunger is compressed until it reaches the bottom, the membrane is purged with air for maximum sample recovery. For direct instrument injection, a needle is placed on the Autovial slip-Luer outlet.

Features and benefits

- Single unit convenience: unit is pre-assembled and easy to load.
- · Choice of filter media for compatibility with a wide range of sample types.
- Excellent for hazardous samples. Self-contained device removes the risk of filter pop-off.
- Built-in air purge maximizes sample recovery.
- Sterile option is available to maintain sample integrity.
- Glass fiber or polypropylene prefilter is available in selected 12 mL vials for difficult-to-filter samples.

Whatman Autovial membranes are available in a range of filter materials for various applications.

- CA: Low nonspecific protein binding and high loading capacity membrane for biological solutions
- GMF: Glass microfiber depth filter for samples in aqueous or organic solutions
- NYL: Nylon membrane for aqueous and organic samples within a pH range of 3 to 10
- PES: Low nonspecific protein binding membrane for samples in aqueous solutions
- PP: Hydrophobic membrane, resistant to a wide range of organic solvents
- **PTFE:** For samples with > 50% organic solvent
- PVDF: Low nonspecific protein binding membrane for samples in aqueous solutions and/ or organic solvents

Whatman Autovial syringeless filters

Whatman Autovial filter vials

	Whatman Autovial 5	Whatman Autovial 12
Housing	Polypropylene	Polypropylene
Filtration area	1.7 cm ²	3.0 cm ²
Capacity	5 mL	12 mL
Volume hold-up	30 μL	140 µL
Outlet connection	Male slip Luer	Male slip Luer
Sterilization	Autoclave at 121°C for 20 min	Autoclave at 121°C for 20 min

Ordering information

Whatman Autovial filter vials

Pore size (µm)	Catalog number	Media	Sterile	Quantity / pack
Autovial 5—no prefilter				
0.45	AV115NPUNYL**	Nylon	No	50
0.45	AV115NPUAQU**	PVDF	No	50
0.2	AV115NPEORG**	PTFE	No	50
0.45	AV115NPUORG**	PTFE	No	50
0.45*	AV115UGMF**	GMF	No	50
Autovial 12—with glass pre	efilter			
0.45	AV125UCA	CA	No	50
0.2	AV125ENAO	Nylon	No	50
0.45	AV125UNAO	Nylon	No	50
0.45	AV525UNAO	Nylon	No	1000
0.45	AV125NPUPSU**	PES	No	50
0.2	AV125EAQU	PVDF	No	50
0.45	AV125UAQU	PVDF	No	50
0.45	AV525UAQU	PVDF	No	1000
0.45	AV125NPUAQU**	PVDF	No	50
0.2	AV125EORG	PTFE	No	50
0.45	AV125UORG	PTFE	No	50
0.45	AV525UORG	PTFE	No	1000
0.45*	AV125UGMF	GMF	No	50
Autovial 12—with polypropylene prefilter				
0.2	AV125EPP	PP	No	50
0.45	AV125UPP	PP	No	50
* Particle retention rating	CA—Cellulose ace	etate	PP—Polypropylene	

* Particle retention rating

** No prefilters

GMF—Glass microfiber PES—Polyethersulfone

PP—Polypropylene PTFE—Polytetrafluoroethylene PVDF—Polyvinylidene difluoride

Advantage syringe filters

Whatman Uniflo syringe filters

Whatman Uniflo™ Syringe Filters are disposable filters designed to provide clean filtrate from small volumes up to 100 mL. They are available in a variety of membrane choices with a polypropylene overmold housing. Whatman Uniflo syringe filters are available with:

- 13 mm, 25 mm or 30 mm diameters
- 0.2 µm or 0.45 µm pore sizes
- Sterile or non-sterile options
- Laser etched printing on the filter for easy identification

Whatman Uniflo syringe filters

Filter media	Typical application
Nylon	Aqueous and/or organic samples; hydrophilic
PES	Aqueous samples
PTFE	Organic based samples Hydrophobic membrane
PVDF	Aqueous and/or organic based samples; low protein binding membrane
H-PTFE	Aqueous and/or aggressive organic solvents; hydrophilic

Integrity test data

Description	Pore size (µm)	Minimum bubble point (psi)
Nylon	0.2	29.0
Nylon	0.45	20.0
Polyethersulfone	0.2	40.0
Polyethersulfone	0.45	33.0
Polytetrafluoroethylene*	0.2	10.0
Polytetrafluoroethylene*	0.45	6.0
Polyvinylidene Difluoride	0.2	39.0
Polyvinylidene Difluoride	0.45	17.5
Hydrophilic Polytetrafluoroethylene	0.2	49
Hydrophilic Polytetrafluoroethylene	0.45	28

* Bubble point determined with 95% Isopropyl Alcohol (IPA) (v/v), all others determined with water.

Whatman Uniflo syringe filters

	Whatman Uniflo 13 mm	Whatman Uniflo 25 mm	Uniflo 30mm w/GF prefilter syringe filter
Dimensions	19.6 mm × 16.9 mm	24.5 mm × 29.2 mm	24.5 mm × 24.5 mm
Filtration area	0.88 cm ²	3.45 cm ²	4.98 cm ²
Operating pressure	65.2 psi	65.2 psi	67.5 psi
Housing	Polypropylene	Polypropylene	Polypropylene
Volume hold up	≤ 50 µL after air purge	≤ 100 µL after air purge	≤ 200 µL after air purge
Flow direction	Flow should enter from inlet	Flow should enter from inlet	Flow should enter from inlet
Inlet connectors	Female Luer Lock	Female Luer Lock	Female Luer Lock
Outlet connectors	Male slip Luer	Male slip Luer	Male slip Luer
Sterilization	Autoclave at 121°C at 15 psi for 20 minutes	Autoclave at 121°C at 15 psi for 20 minutes	Autoclave at 121°C at 15 psi for 20 minutes
Biosafe	Polymer grade and membrane types meet the USP test requirements (for Class VI Plastics)	Polymer grade and membrane types meet the USP test requirements (for Class VI Plastics)	Polymer grade and membrane types meet the USP test requirements (for class VI plastics)
Prefiltration media	N/A	N/A	100% borosilicate glass

Whatman Uniflo syringe filters

Ordering information

Whatman Uniflo syringe filters

Diameter (mm)	Sterility	Pore size (µm)	Membrane	Catalog number	Quantity/pack	
13	Nonsterile	0.2	PVDF	9909-1302	500	
13	Nonsterile	0.45	PVDF	9909-1304	500	
13	Nonsterile	0.2	Nylon	9910-1302	500	
13	Nonsterile	0.45	Nylon	9910-1304	500	
13	Nonsterile	0.2	PTFE	9911-1302	500	
13	Nonsterile	0.45	PTFE	9911-1304	500	
13	Nonsterile	0.2	H-PTFE	9920-1302	100	
13	Nonsterile	0.2	H-PTFE	9921-1302	500	
13	Nonsterile	0.45	H-PTFE	9920-1304	100	
13	Nonsterile	0.45	H-PTFE	9921-1304	500	
13	Nonsterile	0.2	PES	9912-1302	500	
13	Nonsterile	0.45	PES	9912-1304	500	
25	Nonsterile	0.2	PVDF	9909-2502	500	
25	Nonsterile	0.45	PVDF	9917-2504	100	
25	Nonsterile	0.45	PVDF	9909-2504	500	
25	Nonsterile	0.2	Nylon	9910-2502	500	
25	Nonsterile	0.45	Nylon	9918-2504	100	
25	Nonsterile	0.45	Nylon	9910-2504	500	
25	Nonsterile	0.2	PTFE	9911-2502	500	
25	Nonsterile	0.45	PTFE	9911-2504	500	
25	Nonsterile	0.2	H-PTFE	9920-2502	100	
25	Nonsterile	0.2	H-PTFE	9921-2502	500	
25	Nonsterile	0.45	H-PTFE	9920-2504	100	
25	Nonsterile	0.45	H-PTFE	9921-2504	500	
25	Nonsterile	0.2	PES	9912-2502	500	
25	Nonsterile	0.45	PES	9912-2504	500	
13	Sterile	0.2	PES	9916-1302	100	
13	Sterile	0.45	PES	9916-1304	100	
25	Sterile	0.2	PVDF	9913-2502	45	
25	Sterile	0.45	PVDF	9913-2504	45	
25	Sterile	0.2	PES	9914-2502	45	
25	Sterile	0.45	PES	9914-2504	45	
25	Sterile	0.2	PES	9915-2502	200	
25	Sterile	0.45	PES	9915-2504	200	

PTFE—Polytetrafluoroethylene PVDF—Polyvinylidene difluoride PES—Polyethersulfone H-PTFE – Hydrphilic polytetrafluoroethylene

Ordering information

Whatman Uniflo syringe filters (continuation)

Diameter (mm)	Sterility	Pore size (µm)	Membrane	Catalog number	Quantity/pack
30 mm with GF prefilter	Non-sterile	0.2	PES	9923-3002	100
30 mm with GF prefilter	Non-sterile	0.45	PES	9923-3004	100
30 mm with GF prefilter	Non-sterile	0.2	PES	9924-3002	500
30 mm with GF prefilter	Non-sterile	0.45	PES	9924-3004	500
30 mm with GF prefilter	Non-sterile	0.2	PVDF	9925-3002	100
30 mm with GF prefilter	Non-sterile	0.45	PVDF	9925-3004	100
30 mm with GF prefilter	Non-sterile	0.2	PVDF	9926-3002	500
30 mm with GF prefilter	Non-sterile	0.45	PVDF	9926-3004	500
30 mm with GF prefilter	Non-sterile	0.2	PTFE	9927-3002	100
30 mm with GF prefilter	Non-sterile	0.45	PTFE	9927-3004	100
30 mm with GF prefilter	Non-sterile	0.2	PTFE	9928-3002	500
30 mm with GF prefilter	Non-sterile	0.45	PTFE	9928-3004	500
30 mm with GF prefilter	Non-sterile	0.2	Nylon	9929-3002	100
30 mm with GF prefilter	Non-sterile	0.45	Nylon	9929-3004	100
30 mm with GF prefilter	Non-sterile	0.2	Nylon	9930-3002	500
30 mm with GF prefilter	Non-sterile	0.45	Nylon	9930-3004	500
30 mm with GF prefilter	Non-sterile	0.2	H-PTFE	9931-3002	100
30 mm with GF prefilter	Non-sterile	0.45	H-PTFE	9931-3004	100
30 mm with GF prefilter	Non-sterile	0.2	H-PTFE	9932-3002	500
30 mm with GF prefilter	Non-sterile	0.45	H-PTFE	9932-3004	500

PTFE—Polytetrafluoroethylene PVDF—Polyvinylidene difluoride PES—Polyethersulfone H-PTFE – Hydrphilic polytetrafluoroethylene

Mobile phase filtration

Whatman inline filters feature high-purity polypropylene housings to maintain sample purity and are available with a choice of filtration media to suit a range of aqueous and organic samples.

Inline filter/degasser

Whatman Inline Filter/Degassers (IFD) connect directly into an HPLC line to simultaneously filter and degas the mobile phase as it is being used. The Aqueous IFD provides pure filtration of aqueous based HPLC mobile phases while the Solvent IFD is used with organically based HPLC mobile phases. Aqueous IFD is designed to work with mobile phases containing at least 20% aqueous component.

The Aqueous IFD has a 0.2 µm hydrophilic nylon membrane for use with aqueous-based mobile phases. Solvent IFD has a 0.2 µm high-flow polypropylene membrane for mobile phases containing organic solvents. Both devices have a polypropylene housing, the circumference of which is sealed by a security ring, fittings to accommodate 1/16" to 1/8" tubing and an air vent on the inlet with Luer lock cap to enable priming.

The inline filters work on the principle of "bubble point"—the point of pressure at which gases will pass through a wet membrane. If pressure is maintained below the bubble point, the gas will not pass through the membrane and is trapped by the particular filter device.

NUM 2005.920 WENT 1504 10472

Inline filter/degassers (IFD)

Features and benefits

- · Faster than traditional methods of mobile phase preparation, saving time in the laboratory
- Enhanced laboratory safety
- No need to purchase expensive degassing equipment
- Rugged, chemically resistant polypropylene construction
- Air vent on inlet with Luer lock cap
- Integrity-testable (bubble point method)

Applications

- HPLC analysis
- Pharmaceutical research
- · Analytical chemistry

Aqueous IFD and Solvent IFD

	Aqueous IFD	Solvent IFD
Bubble point*		
bar	2.9 (a)	0.76 (b)
psi	42 (a)	11.0 (b)
Maximum flow rate**	2.5 mL/min	2.5 mL/min
Filtration area	16 cm ²	16 cm ²

* Typical values determined with (a) water and (b) isopropanol

** For effective gas bubble removal in HPLC

Ordering information

Aqueous IFD and Solvent IFD

Diameter	Pore size (µm)	Catalog number	Description	Media	Quantity/pack
50	0.2	6726-5002	Aqueous IFD ¹	Nylon	10
50	0.2	6726-5002A	Aqueous IFD ²	Nylon	10
50	0.2	6725-5002	Solvent IFD ¹	PP	10
50	0.2	6725-5002A	Solvent IFD ²	PP	10

¹ Standard catalog numbers include O-rings: 1/32-5/32; accepts different diameter tubing 0.8-4 mm

² Catalog numbers with suffix A are non-o-ring style and accept 1/8 tubing only

PP—Polypropylene

Polydisc filters

Whatman Polydisc 50 mm inline disc filters are designed for larger volume sample filtration in the laboratory, at a pilot plant, or in manufacturing. Sample volumes up to 1 liter can be filtered with one device. Polydisc devices can be used in conjunction with a syringe or connected inline via stepped hose barbs.

Polydisc filters feature a high-purity polypropylene housing and are available with a choice of filtration media to suit aqueous and organic samples. The devices are autoclavable and sterile options are available.

Polydisc AS

The Polydisc AS (Aqueous Solution) family of 50 mm filter devices features a high throughput polyethersulfone membrane, which has low protein binding. These devices are suitable for sterile* filtration of buffers, media and post-fermentation sample preparation. A glass microfiber prefilter extends the life of the membrane and effectively filters heavily contaminated samples. Each Polydisc AS device has a sterility cap on the outlet and is sealed in its own medical-grade clear blister pack, radiation sterilized, and secured in a protective shelf pack.

Features and benefits

- Radiation sterilized. No EtO residuals
- · Barbed hose connections fit multiple tubing sizes
- Integrity-testable (bubble point method)
- Lightweight (11.5 g); avoids collapse of tubing, which can be caused by heavy filter devices

Applications

- Tissue culture media
- Reagent preparation
- Butter clarification
- Fermentation broth
- Particle counting solutions

Polydisc AS filters

Polydisc AS

Pore size (µm)*	Inline connection	Filling volume (µL)	Prefilter/media	Filtration area (cm²)	Water flow rate mL/min at 0.7 bar (10 psi)
0.2	6–10 mm ID hose	540	GMF/PES	16	150
0.45	6–10 mm ID hose	540	GMF/PES	16	225

* Liquid rating. Retention efficiency in gas streams is significantly higher

GMF—Glass microfiber

PES—Polyethersulfone

Ordering information

Polydisc AS

Pore size (µm)	Catalog number	Prefilter/media	Quantity/pack
Sterile			
0.2	6724-5002	GMF/PES	10
0.45	6724-5045	GMF/PES	10
Nonsterile			
0.45	6724-5145	GMF/PES	50

Polydisc TF and ReZist

This device features a PTFE membrane, which is suitable for chemically aggressive solutions, reagents, and organic solvents. This lightweight unit is particularly suitable for protective vents and for inline filtration and isolation applications. The 1 μ m device features a polypropylene prefilter for use with heavily contaminated samples.

Features and benefits

- Solvent-resistant membrane
- Chemical-resistant housing
- Hydrophobic PTFE membrane
- Autoclavable (multiple times)
- Integrity-testable (bubble point or water breakthrough pressure "in situ" methods)
- Biosafe
- Lightweight (11.5 g for Polydisc and 17.9 g for ReZist); avoids tubing collapse, which can be caused by heavy filter devices

Applications

- Pharmaceutical: vents and inline applications
- Biotech: sterile vents and exhausts for growth environments, inline sterilization of gases
- Laboratory: filtration of solvents and reagents, drying gases
- Electronics: photoresists, solvents, gases for research

Polydisc TF

	Integrity IPA bubl	test data* ble point	Water bre	akthrough			
 Pore size (μm)	(bar)	(psi)	(bar)	(psi)	Flow rates** methanol mL/min at 0.7 bar (10 psi)	Air SLPM at 0.2 bar (3 psi)	
0.1	1.7	25	3.4	50	200	8	
0.2	0.9	13	2.1	30	400	16	
0.45	0.5	7	1.1	16	700	24	
1.0	0.2	3	0.3	5	900	30	Polydisc inline filters. The

* Refers to sterilization by filtration for small sample use which is an industry term for filters of pore size 0.2 µm or smaller as referenced in guidance such as EPA Guidance for Industry Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice Section IX, Part B (September 2004).

** Typical values

Ordering information

Polydisc TF and ReZist

Pore size (µm)	Media	Catalog number	Sterile	Quantity/pack
Polydisc TF				
0.1	PTFE	6720-5001	No	10
0.2	PTFE	6720-5002	No	10
0.45	PTFE	6720-5045	No	10
1.0	PTFE*	6721-5010	No	10
ReZist filter 50 mm, ster	ile			
0.2	PTFE	10463607	Yes	10
0.2	PTFE	10463608	No	10
0.2	PTFE	10463609	No	50

Polydisc ReZist filter

* With PP prefilter

Inline connection 6-10 mm ID hose

PTFE—Polytetrafluoroethylene

Polydisc HD

Excellent flow rate characteristics for filtering large volumes to 1 liter of aqueous and solvent samples. Polydisc HD (Heavy Duty) is available in 5 and 10 μ m retention ratings.

Features and benefits

- All polypropylene unit for aqueous and solvent samples
- Broad solvent compatibility

Applications

• Large volume sample preparation

Polydisc HD filter

Technical specifications

Polydisc HD

Pore size (µm)*	Filling volume (µL)	Air flow rate SLPM at 1.0 bar (14.5 psi)	Filtration area (cm²)	Water flow rate mL/min at 1.0 bar (14.5 psi)
5.0	540	110	16	1500
10.0	540	140	16	2200

* Liquid rating. Retention efficiency in gas streams is significantly higher

Ordering information

Polydisc HD

Pore size (µm)	Catalog number	Media	Quantity/pack
5.0	6728-5050	Polypropylene	10
10.0	6728-5100	Polypropylene	10
5.0	2227	Polypropylene	50
10.0	2228	Polypropylene	50

Polydisc GW

Polydisc GW (Ground Water) is specifically designed for sample preparation of ground water samples for the analysis of dissolved heavy metals. It is an aqueous filter with low background values for the determination of trace elements. Each pack contains a certificate.

Polydisc GW features simplify the preparation of aqueous solutions for the analysis of dissolved heavy metals.

- Large filter surface
- Quartz fiber prefilter
- Membrane filter in sandwich arrangement
- High dirt loading capacity

Technical specifications

Polydisc GW

Housing	Polypropylene
Membrane type	Nylon
Prefilter	100% quartz fiber
Filtration diameter	52 mm
Filtration area	20.4 cm ²
Dead volume	220 µL
Filling volume	540 μL
Maximum pressure	4.5 bar (65 psi)
Connections	Tubing nozzle 6-14 mm i.d. hose
Maximum operating temperature	80°C

Ordering information

Polydisc GW 50 mm

Pore size (µm)	Catalog number	Prefilter/media	Quantity/pack
0.45	10463400	Quartz fiber/nylon	20
0.45	10463401	Quartz fiber/nylon	50

Inline connection—Polydisc GW accepts 6-14 mm i.d. hose

Polydisc GW filters

Polydisc SPF

Filtering serum requires removing proteins, lipids, salts, and other cell debris. This range of particulate matter is effectively handled with multilayer prefilters to facilitate downstream work and to avoid clogging later serum filters.

Polydisc SPF stacks a high-flow, hydrophilic PES membrane with a high particle- loading GMF filter to clean out particulates from serum and reduce stress on the final-stage serum filters.

Features and benefits

- High-throughput, inline prefilters for use upstream of serum filters
- GMF prefilter captures large particles and cell debris while PES stack removes remaining particles and bacteria larger than 1 µm
- Designed to extend the life of downstream serum filters
- Effective for microbiology and tissue culture, immunoassays, virology, and diagnostic controls
- 6 to 10 mm i.d. hose connection

Technical specifications

Polydisc SPF

Prefilter material	Glass Microfiber (GMF)
Diameter	50 mm
Housing	Polypropylene (PP)
Connections	Tubing nozzle 6-10 mm i.d. hose
Filtration area	16 cm ²
Filling volume	540 μL

Ordering information

Polydisc SPF

Pore size (µm)	Catalog number	Prefilter/media	Membrane	Quantity/pack
1.0	6724-5000	Glass Microfiber (GMF)	1.0 µm PES	10

PES—Polyethersulfone

Polydisc SPF Filters

Capsule filters

Whether you are conducting research, pilot manufacturing or filtering large volumes or hard-to-filter samples, Cytiva has a Whatman capsule to fit your needs.

Polycap AS

Polycap AS (Aqueous Solution) is recommended for filtering aqueous solutions. It combines a glass microfiber (GMF) prefilter and a nylon membrane, prolonging the life of the filter and allowing larger volumes and difficult samples to be filtered easily.

Features and benefits

- First layer (GMF) acts as a prefilter to ensure longer membrane (0.2, 0.45, and 1.0 µm) life and higher filtration efficiency.
- Nylon membrane layer is inherently hydrophilic, has low extractables, is biosafe, and has excellent flow rates.
- Ultra-clean, containing no surfactant or mold release agents.
- Housing is thermally fused (no glues, adhesives or extraneous materials).
- Integrity-testable by bubble point, pressure decay, or forward flow methods.
- Provides highly effective filtration area in a small size.
- Autoclavable; some presterilized with gamma irradiation.
- Manufactured in clean room facilities under ISO Quality Systems.

Applications

- Admixtures
- Biologicals
- Buffers
- Cleaning/rinsing solutions
- Enzymes
- Immunologicals
- Irrigation solutions
- Nutrients
- Reagent preparation
- Salt solutions
- Tissue culture media
- Viral suspensions

Polycap AS

Housing	Polypropylene
Vent	On inlet
Prefilter	Glass microfiber double laminated with polyolefin monofilament nonwoven
Membrane	Nylon
Support system	Polypropylene
Sealing	Heat-fused
Maximum pressure	60 psi (4.1 bar)
Endotoxin level	LAL tested, ≤ 0.5 EU/mL
Biosafety	Materials pass USP Class VI
Sterilization	Certain filter devices have been sterilized*. Capsules may be autoclaved at 121°C for 20 min (maximum 132°C). However, an integrity test should be performed after autoclaving.
	Filling bell is not autoclavable but is detachable.
Nominal filtration area	36 mm capsule: ~ 400 cm² (62 in²) 75 mm capsule: ~ 820 cm² (127 in²)
IPA bubble point	0.2 μm membrane: ≥ 1.1 bar (16 psi) 0.45 μm membrane: ≥ 0.70 bar (10 psi) 1.0 μm membrane: ≥ 0.21 bar (3 psi)

* Sterile and nonsterile options offered

Ordering information

Polycap AS

					Connections		
Pore size (µm)	Catalog number	Media	Prefilter	Inlet	Outlet	Sterile	Quantity/pack
Polycap AS 36							
0.2	6708-3602	Nylon	GMF	1/2 SB	1/2 SB	Yes	1
0.2	6705-3602	Nylon	GMF	SB	SB	Yes	1
0.2	6709-3602	Nylon	GMF	MNPT	SB	Yes	1
0.2	2606T	Nylon	GMF	FNPT	FNPT	No	5
0.45	6705-36f04	Nylon	GMF	SB	SB	Yes	1
1.0	2608NS	Nylon	GMF	SB	SB	No	5
Polycap AS 36 plus filling bell							
0.2	6706-3602	Nylon	GMF	SB	SB	Yes	1
Polycap AS 75							
0.2	2706T	Nylon	GMF	FNPT	FNPT	No	5
0.45	2707NS	Nylon	GMF	SB	SB	No	5

FNPT—Female National Pipe Thread GMF—Glass microfiber filter MNPT—Male National Pipe Thread 1/2 SB—Stepped barb for 10-12 mm (3/8"-1/2") tubing SB—Stepped barb for 6-10 mm (1/4"-3/8") tubing

Polycap HD

Polycap HD provides an advantage in process applications as its performance characteristics fit between gross filters and microporous membrane filters used for final filtration.

Features and benefits

- 100% polypropylene filter media, support system, and housing allows usage with a broad range of solutions, pH and temperature
- High flow and high retention capacity
- · Materials of construction are FDA approved for food contact
- Can be sterilized by autoclaving with steam at 121°C for 20 min
- · Manual vent with luer lock to bleed air from upstream or serve as an injection or sample port
- Available with a retention rating of 0.2, 0.45, 1.0, 5.0 or 10 µm and a variety of end- fitting configurations
- Manufactured in a Class 10,000 clean room in an ISO certified manufacturing plant

Applications

- Buffers
- Clean air and gas equipment
- Cosmetics and personal care products
- General fine filtration
- Inks and pigments
- Photographic emulsions and make-up water
- Prefiltration for RO/UF/MF membranes
- Reagents
- Sample preparations
- Semiconductor and magnetic media
- Solvents

Polycap HD

Technical specifications

Polycap HD

Housing	Polypropylene
Vent	On inlet
Filter media	Polypropylene
Support system	Polypropylene
Biosafety	Materials pass USP Class VI
Nominal filtration area	36 mm capsule: ~ 400 cm² (62 in²) 75 mm capsule: ~ 820 cm² (127 in²) 150 mm capsule: ~ 1650 cm² (256 in²)
Sterilization	Capsules autoclavable at 121°C at 15 psi for 20 min (maximum temperature is 132°C)
Maximum pressure	4.1 bar (60 psi)
Polycap HD (nonsterile)

				Conne	ections	-
Pore size (µm)	Catalog number	Media	Prefilter	Inlet	Outlet	Quantity/pack
Polycap HD 36						
0.2	2610T	PP	No	FNPT	FNPT	5
1.0	6703-3610	PP	No	SB	SB	1
1.0	2611	PP	No	SB	SB	5
1.0	2611T	PP	No	FNPT	FNPT	5
5.0	6703-3650	PP	No	SB	SB	1
5.0	2612T	PP	No	FNPT	FNPT	5
10.0	6703-3611	PP	No	SB	SB	1
10.0	2613T	PP	No	FNPT	FNPT	5
20.0	6703-3621	PP	No	SB	SB	1
20.0	2614T	PP	No	FNPT	FNPT	5
Polycap HD 75						
0.45	2710	PP	No	1/2 HB	1/2 HB	5
1.0	6703-7510	PP	No	1/2 SB	1/2 SB	1
1.0	2711T	PP	No	FNPT	FNPT	5
5.0	6703-7550	PP	No	1/2 SB	1/2 SB	1
5.0	2712M	PP	No	MNPT	MNPT	5
5.0	2712T	PP	No	FNPT	FNPT	5
10.0	6703-7511	PP	No	1/2 SB	1/2 SB	1
10.0	2713T	PP	No	FNPT	FNPT	5
10.0	2713	PP	No	НВ	SB	5
20.0	6703-7521	PP	No	1/2 SB	1/2 SB	1
20	2714	PP	No	1/2 HB	1/2 HB	5
20.0	2714T	PP	No	FNPT	FNPT	5
Polycap HD 150						
0.45	2810	PP	No	1/2 HB	1/2 HB	5
0.45	2810T	PP	No	FNPT	FNPT	5
5.0	2812T	PP	No	FNPT	FNPT	5
10.0	2813T	PP	No	FNPT	FNPT	5
10.0	2813	PP	No	1/2 HB	1/2 HB	5
20.0	2814T	PP	No	FNPT	FNPT	5

FNPT—Female National Pipe Thread HB—1/2 Hose barb MNPT—Male National Pipe Thread PP—Polypropylene 1/2 SB—Stepped barb for 10-12 mm (3/8"-1/2") tubing SB—Stepped barb for 6-10 mm (1/4"-3/8") tubing

Polycap SPF

Serum is difficult to filter because it contains a high degree of loading of complex particulates, lipids, triglycerides, and lipoproteins that clog filters. When filtering serum without proper prefiltration, membrane filters clog rapidly. Polycap SPF incorporates three layers of media for effective filtration without clogging.

Features and benefits

- Three layers of special media: fine and ultrafine glass microfiber (GMF) and polyethersulfone membrane
- Excellent for hard-to-filter solutions such as serums and protein solutions
- Can be sterilized by autoclaving at 121°C at 15 psi for 20 min
- Manufactured under ISO manufacturing system
- · Suitable for filtering serums, viral suspensions, nutrients, biologicals, immunologicals, enzymes, and buffers
- Prefilters help extend the life of the final filter

Applications

- Biologicals
- Buffers
- EnzymesImmunologicals
- Diagnostic standards
 Nutrients
- Serum prefiltrationTissue culture media
 - Viral suspensions

Technical specifications

Polycap SPF

Housing	Polypropylene
Vent	On inlet
Prefilter	Two layers of glass microfiber
Membrane	Polyethersulfone (PES)
Support system	Polypropylene
Sealing	Heat-fused
Maximum pressure	60 psi (4.1 bar)
Sterilization	Autoclave at 121°C for 20 min (132°C max)
Nominal filtration area	36 mm capsule: ~ 260 cm² (40 in²), 75 mm capsule: ~ 535 cm² (83 in²), 150 mm capsule: ~110cm² (170 in²)

Ordering information

Polycap SPF (nonsterile)

					Connections	
Pore size (µm)	Catalog number	Media	Prefilter	Inlet	Outlet	Quantity/pack
Polycap SPF 36						
1.0	6705-3600	PES	GMF	SB	SB	1
Polycap SPF 75						
1.0	6705-7500	PES	GMF	SB	SB	1
Polycap SPF 150						
1.0	2820	PES	GMF	1/2 HB 1/2 HB	5	
GMF—Glass microfiber filter	PES—Polvet	hersulfone	SB—Stepped barb for 6-10) mm (1/4-3/8) tubing		

Polycap SPF

Polycap TC (PES) is available with and without a filling bell. These disposable, dual layer polyethersulfone (PES) membrane filtration capsules provide efficient filtration for critical aqueous solutions.

The PES membrane is inherently hydrophilic, has low extractables, is biosafe, has excellent flow rates, and exhibits low protein binding.

Features and benefits

- 100% integrity-tested during manufacturing; results are correlated to microbial retention
- Housing thermally fused (no surfactants or mold releasing agents)
- Integrity-testable by bubble point, pressure decay or forward flow methods
- Available in sterile and nonsterile versions with a filling bell option
- Manufactured in clean room facilities under ISO Quality Systems
- PES membrane protein adsorption characteristics:
 - HSA 0.4 µg/cm²
 - Insulin 2.0 µg/cm²
 - Gammaglobulin 1.5 µg/cm²

Applications

- Aqueous solutions
- Biologicals
- Buffers
- Cleaning/rinsing solutions
- Enzymes
- High-quality water
- Particle counting solutions
- Reagent preparation
- Salt solutions
- Tissue culture media
- Virus suspensions

Polycap TC capsule filters

Whatman

Technical specifications

Polycap TC

Housing	Polypropylene
Vent	On inlet
Membrane	Polyethersulfone (PES)
Support system	Polypropylene
Sealing	Heat-fused
Maximum pressure	60 psi (4.1 bar)
Flow direction	If there is a prefilter, it is located on the inlet side and flow should follow arrows
Endotoxin level	LAL tested, ≤ 0.5 EU/mL
Biosafety	Materials pass USP class VI
Sterilization	Certain filter devices have been sterilized*. Capsule may be autoclaved at 121°C for 20 min (maximum 132°C). However, an integrity test should be performed after autoclaving.
Nominal filtration area	36 mm capsule: ~ 440 cm² (72 in²) 75 mm capsule: ~ 930 cm² (144 in²) 150 mm capsule: ~ 1900 cm² (302 in²)
Water bubble point (final membrane)	0.1 μm ≥ 3.2 bar (46 psi) 0.2 μm ≥ 2.7 bar (40 psi) 0.45 μm ≥ 2.1 bar (30 psi) 1.0 μm ≥ 1.1 bar (16 psi)

* Sterile and nonsterile options offered

Polycap TC

				Connections		
Pore size (µm)	Catalog number	Media	Inlet	Outlet	Sterile	Quantity/pack
Polycap TC 36						
0.2/0.1	6714-3601	PES	SB	SB	Yes	1
0.2/0.2	6714-3602	PES	SB	SB	Yes	1
0.2/0.2	2642	PES	SB	SB	No	5
	6714-3604	PES	SB	SB	Yes	1
Polycap TC 36 plus fillin	ng bell					
0.2/0.1	6715-3601	PES	SB	SB	Yes	1
0.2/0.2	6715-3602	PES	SB	SB	Yes	1
0.2/0.2	6716-3602	PES	MNPT	SB	Yes	1
0.65/0.45	6715-3604	PES	SB	SB	Yes	1
0.8/0.2	6715-3682	PES	SB	SB	Yes	1
Polycap TC 75						
0.2/0.1	6714-7501	PES	SB	SB	Yes	1
0.2/0.2	6714-7502	PES	SB	SB	Yes	1
0.65/0.45	6717-7504	PES	1/2 SB	1/2 SB	Yes	1
1.0/1.0	6717-7510	PES	1/2 SB	1/2 SB	Yes	1
Polycap TC 75 plus fillir	ıg bell					
0.2/0.2	6715-7502	PES	SB	SB	Yes	1
0.8/0.2	6715-7582	PES	SB	SB	Yes	1
Polycap TC 150						
0.2/0.1	6717-9501	PES	1/2 SB	1/2 SB	Yes	1
0.2/0.2	6717-9502	PES	1/2 SB	1/2 SB	Yes	1
0.2/0.2	6704-9502	PES	1 1/2" Sanitary	1 1/2" Sanitary	No	5
0.65/0.45	6717-9504	PES	1/2 SB	1/2 SB	Yes	1
Polycap TC 150 plus fill	ing bell					
0.2/0.2	6718-9502	PES	1/2 SB	1/2 SB	Yes	1
0.8/0.2	6718-9582	PES	1/2 SB	1/2 SB	Yes	1

MNPT—Male National Pipe Thread

PES—Polyethersulfone

1/2 SB—Stepped barb for 10-12 mm (3/8"-1/2") tubing

SB—Stepped barb for 6-10 mm (1/4"-3/8") tubing

Polycap TF

Polycap TF filter capsules are made with durable, hydrophobic polytetrafluoroethylene (PTFE) membranes in a polypropylene housing and are designed for use with organic solvents and chemically aggressive solutions.

Features and benefits

- Resistant to most solvents, autoclavable, and integrity-testable
- Available in 0.1, 0.2, 0.45, and 1.0 μm pore sizes
- + 1.0 μm used for extended life and filtration of highly contaminated solutions
- Can be sterilized by autoclaving with steam or EtO
- Manufactured under very clean conditions in a Class 10 000 clean room and under ISO Quality Systems

Applications

- Venting
- Inline filtration
- Isolation
- Electronics
- Pharmaceutical
- Biotech
- Laboratory
- Other uses

Technical specifications

Polycap TF

Housing	Polypropylene
Membrane	PTFE
Vent	On inlet
Support system	Polypropylene
Sealing	Heat-fused
Maximum pressure	60 psi (4.1 bar)
Flow direction	Supported bi-directionally. certain applications may require orientation, i.e. vents.
Reverse flow only for low-pressure applications.	LAL tested, ≤ 0.5 EU/mL
Biosafety	Materials pass USP Class VI
Sterilization	May be autoclaved at 121°C for 20 min (maximum 132°C). Multiple autoclave cycles are possible. However, the responsibility for reuse is with the operator. The device should be protected from cross contamination. An integrity test should be performed after autoclaving.
Nominal filtration area	36 mm capsule: ~ 500 cm² (77 in²) 75 mm capsule: ~ 1000 cm² (155 in²) 150 mm capsule: ~ 2000 cm² (310 in²)
IPA bubble point	0.1 μm membrane: ≥ 1.6 bar (23 psi) 0.2 μm membrane: ≥ 0.9 bar (13 psi) 0.45 μm membrane: ≥ 0.5 bar (7 psi) 1.0 μm membrane: ≥ 0.2 bar (3 psi)

Polycap TF filter capsules

Polycap TF (nonsterile)

Pore size (µm)	Catalog number	Media	Inlet	Outlet	Quantity/pack	
Polycap TF 36						
0.1	6711-3601	PTFE	MNPT	3/8 SB	1	
0.2	6711-3602	PTFE	MNPT	3/8 SB	1	
0.2	6710-3602	PTFE	1/2 SB	1/2 SB	1	
0.2	6700-3602	PTFE	3/8 SB	3/8 SB	1	
0.2	2601	PTFE	-	-	5	
0.2	2601T	PTFE	FNPT	FNPT	5	
0.45	6711-3604	PTFE	MNPT	3/8 SB	1	
0.45	2602S	PTFE	1 1/2" Sanitary	1 1/2" Sanitary	5	
1.0	6700-3610	PTFE	3/8 SB	3/8 SB	1	
1.0	2603	PTFE	-	-	5	
1.0	2603T	PTFE	FNPT	FNPT	5	
Polycap TF 75						
0.1	6700-7501	PTFE	3/8 SB	3/8 SB	1	
0.1	2700T	PTFE	FNPT	FNPT	5	
0.2	6711-7502	PTFE	MNPT	3/8 SB	1	
0.2	6710-7502	PTFE	1/2 SB	1/2 SB	1	
0.2	6700-7502	PTFE	3/8 SB	3/8 SB	1	
0.2	2702M	PTFE	MNPT	MNPT	5	
0.2	2702T	PTFE	FNPT	FNPT	5	
0.45	6700-7504	PTFE	3/8 SB	3/8 SB	1	
0.45	2703T	PTFE	FNPT	FNPT	5	
1.0	6701-7510	PTFE	1/2 SB	1/2 SB	1	
Polycap TF 150						
0.1	2800T	PTFE	FNPT	FNPT	5	
0.2	2802T	PTFE	FNPT	FNPT	5	
0.2	2801	PTFE	1 1/2" Sanitary	1 1/2" Sanitary	5	
0.45	2803T	PTFE	FNPT	FNPT	5	
1.0	2804T	PTFE	FNPT	FNPT	5	

FNPT—Female National Pipe Thread

MNPT—Male National Pipe Thread

PTFE—Polytetrafluoroethylene 1/2 SB—Stepped barb for 10-12 mm (3/8"-1/2") tubing

SB—Stepped barb for 6-10 mm (1/4"-3/8") tubing

Polycap GW

The US Environmental Protection Agency (EPA) and local Departments for Environmental Protection protocols specify filtering ground water samples with a 0.45 µm filter when analyzing dissolved or suspended metals (EPA Method 3005). Specifically designed with field sampling in mind, the Whatman Polycap Ground Water sampling capsule can be used as a convenient inline filter unit.

Features and benefits

- Connects directly to outlet of a sampling pump
- Easy to use
- Filtration membrane is encapsulated in durable polypropylene housing
- Large surface area is optimized to provide at least 600 cm² of effective filtration area to ensure rapid sample collection
- · Housing components are thermally fused (no glues, adhesives, metals, epoxies, or extraneous materials)
- Suitable for filtration procedure outlined in EPA Method 3005 for ground water analysis
- Stepped hose barb fittings allow for connection with various size tubings
- · Lot number printed on each unit for traceability

Applications

• Filter ground water samples before dissolved metal analysis

Technical specifications

Polycap GW

Housing	Polypropylene
Filter media	0.45 μm: PES filter
Inlet/outlet	1/4 to 3/8 in (6-9 mm) Stepped barb (SB)
Support system	Polypropylene
Vent	On inlet
Nominal filtration area	600 cm² (93 in²)
Wetting characteristics	Hydrophilic
Maximum pressure 60 psi (4.1 bar) Water flow rate at 1.0 bar (14.5 psi) 60 L/min	
Flow direction	Flow should follow arrows

Ordering information

Polycap GW

			Connections		
Pore size (µm)	Catalog number	Media	Inlet	Outlet	Quantity/pack
Polycap GW 75					
0.45	6714-6004	PES	SB	SB	1
0.45	6724-6004	PES	SB	SB	100

PES—Polyethersulfone SB—Stepped barb for 6-10 mm (1/4"-3/8") tubing

Carbon Cap

This filter capsule is suitable for adsorption of organics from air and removal of color, organics, and chlorine from water.

Carbon Cap is filled with high-purity, high-efficiency, acid washed, granular-activated carbon and a pleated HEPA filter. It is made specially to meet the requirements for continuous column percolation purification processes.

Features and benefits

- Carbon acts as an adsorption medium
- Pleated glass microfiber filter structure
- Retains 99.97% of particles greater than 0.3 μm
- Large surface area of activated carbon for effective operation
- Two sizes of capsules available to suit your specific application
- · Removes noxious odors, oil mists, and contaminants
- Removes a potential health hazard from the workplace

Applications

- · Water, chemical, and reagent purification
- Compressed air lines and vacuum pumps
- Instrument outlet exhausts

Technical specifications

Carbon Cap

Housing	Polypropylene
Filter media	Activated carbon with a pleated HEPA cartridge
Support system	Polypropylene
Sealing	Heat-fused
Maximum pressure	60 psi (4.1 bar)
Surface area (activated carbon)	Carbon Cap 75 capsule: 26,000 m² Carbon Cap 150 capsule: 82,000 m²

Ordering information

Carbon cap

Description	Catalog number	Quantity/pack
Carbon cap 75	6704-7500	1
Carbon cap 150	6704-1500	1

Carbon cap filters

Venting filters

Whatman venting filters are disposable devices designed and manufactured with a high-purity polypropylene housing to maintain sample purity. Products are available with a choice of filtration media to suit a range of venting applications. All seals are fused, with no glue, adhesive, metal, epoxy, or other extraneous materials used in construction.

Whatman PolyVENT integral vent filters

Whatman PolyVENT filters are integral venting filters that work bidirectionally to prevent bacterial and other contaminants from entering vessels like incubators, bioreactors or fermentation tanks during draining or filling. With an integral PTFE filter membrane, Whatman PolyVENT acts as an industrial air filter media for sterilization* of gases entering bioreactors such as fermentation tanks.

Features and benefits

- 0.2 µm hydrophobic PTFE air filters are excellent industrial air filter media
- Testable by water breakthrough (WBT) test or bubble point testing
- Passes USP Class VI biosafety tests for plastics
- Manufactured in clean room facilities
- Range of filtration areas from 4–2000 cm² to support filtration volumes as small as one liter and as large as a large tank vessel

Applications

- Bioreactors
- Fermentation tanks
- Incubators

PolyVENT integral vent filters

* Refers to sterilization by filtration for small sample use, which is an industry term for filters of pore size 0.2 µm or smaller as referenced in guidance such as EPA Guidance for Industry Sterile Drug Products Produced by Aseptic Processing – Current Good Manufacturing Practice Section IX, Part B (September 2004).

Technical specifications

PolyVENT venting filters

Housing	Polypropylene
Filter media	PTFE (polytetrafluoroethylene)
Pore size	0.2 µm
Vent	On inlet
Support system	Polypropylene
Sealing	Heat-fused
Maximum pressure	29 psi (2 bar)—forward direction
Water breakthrough test	29 psi (2 bar)/15 seconds
Flow direction	Bidirectional
Biosafety	Materials pass USP Class VI
Sterilization	Can be autoclaved at 121°C at 15 psi for 20 min (maximum 132°C). Multiple autoclave cycles are possible. However, the responsibility for reuse is with the operator. The device should be protected from cross contamination. An integrity test should be performed after autoclaving.
Nominal filtration area	36 mm capsule: ~ 500 cm ² 75 mm capsule: ~ 1000 cm ² 150 mm capsule: ~ 2000 cm ² 50 mm disc: 16 cm ² 25 mm disc: 4 cm ²

Ordering information

PolyVENT venting filters

			Connections			
Pore size (µm)	Catalog number	Housing type	Inlet	Outlet	Media	Quantity/pack
PolyVENT 36						
0.2	6713-5036	Capsule	SB	SB	PTFE	1
0.2	2103	Capsule	1/2 SB	1/2 SB	PTFE	1
PolyVENT 75						
0.2	6713-1075	Capsule	1/2 SB	1/2 SB	PTFE	1
PolyVENT 150						
0.2	2107	Capsule	1/2 SB	1/2 SB	PTFE	1
0.2	2108	Capsule	1 1/2" Sanitary	1 1/2" Sanitary	PTFE	1
PolyVENT discs						
0.2	6713-0425	25 mm	FLL	ML	PTFE	50
0.2	6713-1650	50 mm	SB	SB	PTFE	10
0.2	6713-1651	50 mm	SB	SB	PTFE	100

FLL—Female Luer lock ML—Male Luer lock PTFE—Polytetrafluoroethylene 1/2 SB—Stepped barb for 10-12 mm (3/8"-1/2") tubing

SB—Stepped barb for 6-10 mm (1/4"-3/8") tubing

Filtration devices - Venting filters

HEPA-VENT and **HEPA-CAP**

HEPA filter media are used throughout the scientific, research, and industrial environments in a variety of air and gas filtration applications where high retention, dirt-holding capacity, and flow rates are required.

Features and benefits

- Glass filter media strengthened by dual lamination with a tough polyester monofilament
- Retains 99.97% of all particles \geq 0.3 μ m in air
- Durable polypropylene housing
- High flow rates with low pressure drops across filter media, ensuring clean air passing in and out of vessels
- Suitable for particulate removal from air and gases, prefilter for suction or to serve gas inline filter
- · Can be sterilized by autoclaving with steam
- Available in a variety of end-fitting configurations
- Manufactured in clean room facilities under ISO Quality Systems
- Repeatedly autoclavable at 121°C at 15 psi for 20 min (132°C max) for assured sterility
- Allows bidirectional flow
- Depth filter design allows for high loading capacity

Applications

- Preventing bacterial, algal, or fungal contamination in fermentors or incubators
- Tissue culture applications
- Gas line filter
- Particulate removal from gases
- Prefilters for suction

HEPA-VENT and HEPA-CAP filters

Technical specifications

HEPA venting filters

Housing	Polypropylene			
Filter media	Laminated hydrophobically treated glass microfiber			
Support system	Polypropylene			
Sealing	Heat-fused			
Maximum pressure	60 psi (4.1 bar)—capsule			
Flow direction	Bidirectional			
Biosafety	Materials pass USP Class VI <88> in vivo			
Sterilization	Autoclavable			
Nominal filtration area	36 mm capsule: ~ 625 cm² (97 in²) 75 mm capsule: ~ 1300 cm² (201 in²) 150 mm capsule: ~ 2590 cm² (402 in²) 50 mm disc: 16 cm²			

Ordering information

HEPA-VENT and **HEPA-CAP** filters

			Connections		
Pore size (µm)	Housing type	Inlet	Outlet	Quantity/pack	
HEPA-CAP 36					
6702-3600	Capsule	1/4-3/8 SB	1/4-3/8 SB	1	
2609T	Capsule	3/8 in. FNPT	3/8 in. FNPT	5	
HEPA-CAP 75					
6702-7500	Capsule	3/8-1/2 in. SB	3/8-1/2 in. SB	1	
2709T	Capsule	3/8 in. FNPT	3/8 in. FNPT	5	
HEPA-CAP 150					
6702-9500	Capsule	3/8 in. FNPT	3/8 in. FNPT	1	
2809T	Capsule	3/8 in. FNPT	3/8 in. FNPT	5	
HEPA-VENT disc filter					
6723-5000	50 mm disc	1/4-3/8 SB	1/4-3/8 SB	10	

FNPT—Female National Pipe Thread 1/2 SB—Stepped barb for 10-12 mm (3/8"-1/2") tubing

SB—Stepped barb for 6-10 mm (1/4"-3/8") tubing

Vacuum protection filters

VACU-GUARD vacuum protection filters

VACU-GUARD inline filters help protect your equipment from potentially damaging contaminants. Choose from disc and capsule formats, depending on your application.

VACU-GUARD disc filter

Features and benefits

- Prevents fluid and aerosol contamination of vacuum pumps or aspiration suction systems while removing hazardous exhaust
- Flexible: designed for use with 6–10 or 10–12 mm i.d. tubing
- Biosafe: all materials pass USP Class VI Test for Plastics

Applications

• Protects vacuum pumps and systems from aerosols and particulate contamination

VACU-GUARD 150 capsule filter

Features and benefits

• Choice of media: VACU-GUARD 150 capsule filters include all the features and benefits of standard VACU-GUARD disc filters, plus a range of media for specific applications.

Applications

- Added back-up protection: use as a backup between a cold trap and pump to protect against moisture and organic vapors if cold trap fails
- · Activated carbon removes organic vapors from air
- · Desiccant for use with high velocity acidic air

VACU-GUARD disc filters

VACU-GUARD 150 capsule filters

Technical specifications

VACU-GUARD inline disc filter - 50 and 60 mm

	50 mm	60 mm		
Filtration area	16 cm ²	25 cm ²		
Maximum operating pressure	1 bar (15 psi)	1 bar (15 psi)		
Biosafety	All materials pass USP Class VI test for plastics	All materials pass USP Class VI test for plastics		
Rated retention in air	99.99% particle retention for particles ≥ 0.1 µm	99.99% particle retention for particles $\ge 0.1 \mu m$		
Pore size (in liquid)	0.45 µm	0.45 µm		
Housing	Polypropylene	Polypropylene		
Filtration media	PTFE membrane	PTFE membrane		
Connectors	1/4–3/8" (6–10 mm) SB (stepped barb) inlet and outlet	3/8–1/2" (10–12 mm) SB inlet and outlet		
Flow rates (SLPM): 2 psi (0.14 bar)* 4 psi (0.28 bar)* 6 psi (0.41 bar)* 10 psi (0.69 bar)*	15 27 38 53	27 57 83 139		
Flow direction	Inlet to outlet	Inlet to outlet		

* Differential pressure

Technical specifications

VACU-GUARD 150 inline capsule filter

	Activated carbon	Desiccant
Chemical trap media	Activated carbon	Anhydrous calcium sulphate
Filter media	PTFE	PTFE
Surface area or weight (nominal)	82 000 m² (carbon)	318 g (desiccant)
Flow rates (SLPM) (nominal): 0.1 bar (1.45 psi)* 0.5 bar (7.25 psi)*	210 450	280 600
Maximum operating pressure: Dry gas Wet gas	4 bar (60 psi) 1 bar (14 psi)	4 bar (60 psi) 1 bar (14 psi)
Connectors: Inlet Outlet	Hose barb for 1/2" (12.7 mm) tube 3/8–1/2" (10–12 mm) step barb	Hose barb for 1/2" (12.7 mm) tube 3/8–1/2" (10–12 mm) step barb

* Differential pressure

Note: as with any chemical reaction, care should be used to determine the safety and usefulness of VACU-GUARD 150 products prior to routine use.

VACU-GUARD

Product	Catalog number	Quantity/pack
VACU-GUARD, 50 mm disc	6722-5000	10
VACU-GUARD, 60 mm disc	6722-5001	10
VACU-GUARD 150 capsule, activated carbon	6722-1001	1
VACU-GUARD 150 capsule, desiccant	6722-1002	1

05 Microbiology products

We provide a broad range of high-quality products for applications that include:

- microbiological quality control in food and beverage industries
- environmental analysis
- pharmaceutical quality control
- wastewater testing

Our products help you ensure that every person who uses your products is getting the highest quality and safest ingredients.

Membrane filtration	198
Microbiology membranes	198
Polycarbonate membranes	200
MBS I microbiological filtration system	201
eButler membrane dispenser	201
Membrane filtration accessories	202
Pressure filtration devices	203
Vacuum filtration equipment	203

Membrane filtration

Microbiological recovery membranes

Our ME (mixed cellulose ester) and MicroPlus (cellulose nitrate) membrane filters are designed and tested in accordance with ISO 7704, ISO 8199 and ISO 11133 guidance. Each batch of membrane is tested to ensure high recoveries, excellent colony morphology and reliable, reproducible results.

Features and benefits

- Economical
- Ready to use
- Hydrophilic, intended for aqueous solutions
- Sterile, individually packed or dispenser packaged for use with the eButler membrane dispenser
- Available in a range of colors, pore sizes, and diameters with a unique pattern grid line designed to neither enhance nor inhibit colony growth

For a wider choice of membranes, please refer to the Membrane Filters section.

Ordering information

ME and MicroPlus membrane filters

Diameter (mm)	Catalog number	Description	Pore size (µm)	Color	Grid/color	Quantity/pack
ME (mixed cellulose	ester)					
47	10407312	ME25/21 STL	0.45	White	3.1 mm/black	400
50	10407314	ME25/21 STL	0.45	White	3.1 mm/black	400
47	10406870	ME25/21 ST	0.45	White	3.1 mm/black	100
47	10406871	ME25/21 ST	0.45	White	3.1 mm/black	1000
47	10407332	ME25/31 STL	0.45	Black	3.1 mm/white	400
50	10406872	ME25/21 ST	0.45	White	3.1 mm/black	100
50	10407334	ME25/31 STL	0.45	Black	3.1 mm/white	400
47	10407370	ME25/41 STL	0.45	Green	3.1 mm/black	400
50	10407372	ME25/41 STL	0.45	Green	3.1 mm/black	400
47	10409470	ME25/41 ST	0.45	Green	3.1 mm/black	100
50	10409472	ME25/41 ST	0.45	Green	3.1 mm/black	100
47	10408712	ME24/21 STL	0.2	White	3.1 mm/black	400
50	10408714	ME24/21 STL	0.2	White	3.1 mm/black	400
50	10407324	ME25/20 STL	0.45	White	5.0 mm/black	400

* Individually packed

** With hydrophobic rim

ST—Single sterile packed

STL—Sterile, for use with Whatman eButler membrane dispenser

Sterile Cellulose ME25/21 MCE Membrane Filters

ME and MicroPlus membrane filters (continuation)

Diameter (mm)	Catalog number	Description	Pore size (µm)	Color	Grid/color	Quantity/pack
ME (mixed cellulos	se ester) (continuatio	n)				
50	10408915	ME27/21 STL	0.8	White	3.1 mm/black	400
47	10407342	ME27/31 STL	0.8	Black	3.1 mm/white	400
50	10407615	ME27/41 STL	0.8	Green	3.1 mm/black	400
50	10409834	ME26/31 STL	0.6	Black	3.1 mm/white	400
ME 24						
47	10406970	ME24/21 ST	0.2	White	3.1 mm/black	100
47	10408712	ME24/21 STL	0.2	White	3.1 mm/black	400
50	10406972	ME24/21 ST	0.2	White	3.1 mm/black	100
50	10408714	ME24/21 STL	0.2	White	3.1 mm/black	400
ME 25						
47	10407970	ME25/51 ST**	0.45	White	3.1 mm/black	100
47	10406871	ME25/21 ST	0.45	White	3.1 mm/black	1000
47	10409770	ME25/31 ST	0.45	Black	3.1 mm/white	100
47	10409771	ME25/31 ST	0.45	Black	3.1 mm/white	1000
50	10406572	ME25/20 ST	0.45	White	5.0 mm/black	100
50	10409772	ME25/31 ST	0.45	Black	3.1 mm/white	100
ME 27						
47	10408970	ME27/21 ST	0.8	White	3.1 mm/black	100
47	10409970	ME27/61 ST with pad	0.8	White	3.1 mm/black	100
50	10405672	ME27/41 ST	0.8	Green	3.1 mm/black	100
ME 28						
50	10408472	ME28/41 ST	1.2	Green	3.1 mm/black	100
MicroPlus (cellulo	se nitrate)					
47	10407112	MicroPlus-21 STL	0.45	White	3.1 mm/black	100 × 4
50	10407114	MicroPlus-21 STL	0.45	White	3.1 mm/black	100 × 4
47	10407713	MicroPlus-21 ST	0.45	White	3.1 mm/black	100
50	10407714	MicroPlus-21 ST	0.45	White	3.1 mm/black	100
47	10407132	MicroPlus-31 STL	0.45	Black	3.1 mm/white	100 × 4
50	10407134	MicroPlus-31 STL	0.45	Black	3.1 mm/white	100 × 4
50	10407734	MicroPlus-31 ST	0.45	Black	3.1 mm/white	100
47	10407170	MicroPlus-41 STL	0.45	Green	3.1 mm/black	100 × 4
50	10407172	MicroPlus-41 STL	0.45	Green	3.1 mm/black	100 × 4

Individually packed
 ** With hydrophobic rim

ST—Single sterile packed STL—Sterile, for use with Whatman eButler membrane dispenser

Polycarbonate membranes

Cyclopore polycarbonate membranes

Black Cyclopore membranes are excellent for epifluorescence and other microscopy applications requiring a contrasting background. The polycarbonate membrane is used to filter the sample and is then used directly for analysis. The dark membrane gives lower background fluorescence and improves the sensitivity of the test.

Natural Cyclopore membranes are well suited for concentration of organisms and visualizing by transmission light and scanning emission microscopy. They are also effective for concentrate and elute microbiological methods prior to plating the concentrated sample onto agar. Concentrated samples can also be used for eDNA methods or other types of molecular detection. Meets the requirements for ISO 11731 *Legionella sp* testing.

See page 67 and 74 for details and ordering information.

Cyclopore PC Polycarbonate Black membrane filters

Nuclepore polycarbonate membranes

Nuclepore black dyed polycarbonate membranes are high performance membranes suited for applications using epifluorescence microscopy. Black membranes greatly reduce background fluorescence, which results in improved microorganism and particulate visibility.

Using these membranes in combination with epifluorescence techniques, rapid enumeration of viable and nonviable microorganisms and particulate matter can be conducted in 30 minutes or less. Conventional culturing methods require incubation times of more than 24 hours. Use black track-etched membranes with epifluorescence techniques to achieve rapid, direct enumeration of microorganisms.

Natural Nuclepore membranes are well suited for concentration of organisms and visualizing by transmission light and scanning emission microscopy. They are also effective for concentrate and elute microbiological methods prior to plating the concentrated sample onto agar. Concentrated samples can also be used for eDNA methods or other types of molecular detection. Meets the requirements for ISO 11731 *Legionella sp* testing.

Features and benefits

- Polycarbonate track-etched membrane dyed black with Irgalan Black
- Flat, smooth surface assures surface capture of microorganisms and particles
- Extremely low nonspecific absorption

See page 71 and 75 for details and ordering information.

Yeast cells on Black Cyclopore with DAPI Stain

MBS I microbiology filtration system

The Whatman MBS I microbiology filtration system streamlines and simplifies processes in busy microbiology labs using the membrane filtration (MF) technique. The modular system provides flexibility to select the hardware and accessories that best suit the unique and varied workflows of your lab.

- Filter funnels: 100 and 350 mL sizes for multiple re-use
- Funnel dispenser: accommodates both funnel sizes and maintains an orderly workspace
- AS220 MBS I Manifold: modular test stand in 2-place segments
- Membrane selection: variety of pore sizes, color and packaging
- eButler membrane dispenser: aseptically dispense discs using sensor dispense or press of a button

See page 116 for details and ordering information.

MBS I, Steel Frit with Ring for AS220

eButler membrane dispenser

Aseptic dispense, clean workspace

Dispense membrane filters quickly and easily while maintaining sterility.

- Push-button or sensor dispense.
- Durable and easy-to-load guides are printed right on the equipment.
- Complete membrane selection of pores sizes, colors and 47 or 50 mm diameters is available.
- Membrane identification is easy to read with every dispense.
- Maintain a tidy workspace free of packaging material.

See page 181 for details and ordering information.

eButler membrane dispenser

Membrane filtration accessories

Whatman offers a line of analytical funnels and vacuum filtration equipment for use in microbiological testing processes

See page 101 and 117 for details and ordering information.

Vacuum filtration equipment

MV 050 series

The MV series vacuum filtration equipment is made of stainless steel, providing broad chemical compatibility and ease of cleaning for years of service.

The durable construction provides flexibility of use up to 200 °C and is compatible with a variety of filtration media including glass microfiber, membrane or layered filtration.

Applications

- Microbiology (e.g. Escherichia coli detection), biochemistry, hydrobiology
- · Food and beverage testing, (e.g. cold sludge in beer), pharmaceuticals, cosmetics, water, wastewater
- Residue analysis, precipitate analysis, contamination tests.

See page 104 for details and ordering information.

Multiple vacuum filtration apparatus

The stainless steel manifold and manifold assemblies for three or six filtration units are fitted with stainless steel units. The apparatus can be autoclaved and sterilized by dry heat at up to 180°C. It is suitable for vacuum operation, not intended for positive pressure applications.

Applications

- Microbiological quality control
- Residue analyses
- Serial filtration carried out rapidly and easily with a common drainage outlet

See page 106 for details and ordering information.

Accessories and vacuum filtration apparatus

Vacuum pump*

Vacuum pumps are typically used in laboratory settings to facilitate filtration with funnels and flasks or manifolds for microbiological examination, analytical mobile phase filtration, aspiration of tissue culture media, and various other filtration applications requiring vacuum draw.

Features

- Diaphragm pump intended for use with fluid trap collection and compatible with systems filtering water or typical HPLC solvent filtration*
- For intermittent use under ambient conditions (10 40 °C)*
- Lightweight and compact pump for easy movement around the lab while using minimal workspace on the benchtop or in the hood
- * This pump is not intended for fluid flow-through applications nor continuous pumping exceeding an hour of constant service

See page 119 for details and ordering information.

Witt's bottle WT 100

For filtrate collection in an inserted container. The bottle is made of borosilicate glass. It has a replaceable round lid and sidemounted tubing nozzle for vacuum tubing 8 mm (inside diameter).

Forceps PZ 001

The stainless steel forceps with smooth angled jaws (104 mm long) are excellent for handling membrane filters. They are autoclavable and can be flame sterilized with ethanol.

See page 120 for details and ordering information.

SF 100 Suction Flask

SF 100 Suction Flask, 1000 mL with tubing nozzle, vacuum filtration apparatus accessories

See page 103 for details and ordering information.

Witt's Bottle WT 100 and Forceps PZ 001

SF 100 Suction Flask

Specialty products

Separate the organic from the inorganic. Protect lab surfaces. Test the pH levels in swimming pools. Cytiva offers a range of specialty products to meet your specific testing requirements.

Chromatography papers	206
Extraction thimbles	209
Cellulose thimbles	209
Glass and quartz thimbles	212
Benchkote and Benchkote Plus	214
Benchkote protectors for lab-scale ÄKTA systems	216
Weighing papers	217
Paper for ignition strength (IS) measurement	218
pH indicators and test papers	219
Papers for healthcare	222
Phase separator paper	223
Lens cleaning tissue	224
Moisture testing papers	224

Chromatography papers

Whatman chromatography paper media are made from specially selected cotton cellulose. They are rigorously quality controlled for characteristics important to the chromatographer and to ensure uniformity within the grade.

Features and benefits

- · Pure cellulose produced entirely from the highest quality cotton linters with no additives of any kind
- Manufactured and tested specifically for chromatographic techniques to ensure the wicking capability and uniformity of capillary
 action that are important in chemical separations
- · Also widely used in protein and nucleic acid blotting

Cellulose chromatography papers

Grade 1 Chr

A smooth surface, 0.18 mm thick with a linear flow rate (water) of 130 mm/ 30 min. Good resolution for general analytical separations.

Grade 2 Chr

Thickness 0.18 mm. Flow rate 115 mm/30 min. Slower than 1 Chr for higher resolution applications. Smooth surface. Particularly recommended for optical or radiometric scanning.

Grade 3 Chr

A medium thickness paper (0.36 mm) with a flow rate of 130 mm/30 min. For general applications with medium/heavy solute loadings. Frequently used for separation of inorganic compounds and for electrophoresis.

Grade 4 Chr

Thickness 0.21 mm. Flow rate 180 mm/30 min. Fastest of our thin papers. Recommended for routine and/or repetitive chromatography when loadings are relatively low. Smooth surface. Very suitable where speed is important and very high resolution is not required.

Grade 17 Chr

A thick (0.92 mm) and highly absorbent paper with a very high flow rate of 190 mm/30 min. Suitable for the heaviest loadings and for preparative paper chromatography and electrophoresis.

Cortivo

Cellulose chromatography papers

Grade 20 Chr

Thickness 0.17 mm. Flow rate 85 mm/30 min. For maximum resolution, this grade gives the greatest possible separation of closely related compounds. Smooth surface. Recommended for separation of samples of unknown composition, with outstanding resolution at low loadings.

Grade 31ET Chr

Thickness 0.50 mm. Flow rate 225 mm/30 min. Extremely fast. Flow rate is the highest of all chromatography papers in the Whatman range. Thick paper with fairly soft surface. Principal application is in electrophoresis of large molecules.

Grade 54 SFC

Thin (0.18 mm) hardened paper with high speed (180 mm/30 min) and fair to good resolution. Recommended for routine chromatography. High wet strength.

Grade 2668 Chr

Thickness 0.9 mm. Flow rate 155 mm/10 min. For separation of relatively large molecules by electrophoresis.

Grade 2727 Chr

Thickness 1.40 mm. Flow rate 180 mm/30 min. For separation of very large amounts of substance.

Grade SG81

Thickness 0.27 mm. Flow rate 110 mm/30 min. Ion exchange chromatography paper combining cellulose and large pore silica gel. For enzyme assays to separate product from reactant by charge or polarity.

Cellulose chromatography paper

Catalog number						_						
Dimensions	Grade 1 Chr	Grade 2 Chr	Grade 3 Chr	Grade 4 Chr	Grade 17 Chr	Grade 20 Chr	Grade 31ET Chr	Grade 54 SFC	Grade 2668 Chr	Grade 2727 Chr	Grade SG81	Quantity/ pack
Circles												
185 mm	-	-	-	-	-	-	-	-	-	10382514	-	100
Sheets												
2 × 5 cm	-	-	-	-	-	-	3031-901	-	-	-	-	1000
2.5 × 22 cm	-	-	-	-	3017-8793	-	-	-	-	-	-	100
7 × 9 cm	-	-	-	-	3017-820	-	-	-	-	-	-	100
10 × 30 cm	3001-845	-	-	-	-	-	-	-	-	-	-	100
19 × 19 cm	-	-	-	-	-	-	-	-	-	10382581	-	100
20 × 20 cm	3001-861	-	-	-	-	-	-	-	-	-	-	100
25 × 25 cm	3001-878	-	-	-	-	-	-	-	-	-	-	100
46 × 57 cm	-	-	-	-	3017-915	-	3031-915	-	-	-	3668-915	25
46 × 57 cm	3001-917	3002-917	3003-917	3004-917	3017-917	3020-917	-	-	-	-	-	100
46 × 57 cm	3001-918	-	-	-	-	-	-	-	-	-	-	500
58 × 60 cm	-	-	-	-	-	-	-	-	-	10382562	-	50
58 × 60 cm	-	3002-911	-	-	-	-	-	-	10382461	-	-	100
58 × 68 cm	3001-931	-	-	_	-	_	-	-	_	-		100
Reels												
1.0 cm × 100 m	3001-604	-	-	-	-	-	_	_	_	-	-	1
2.0 cm × 100 m	3001-614	-	-	3004-614	-	-	-	-	-	-	-	1
2.5 cm × 30 m	-	-	-	-	3017-621	-	-	-	-	-	-	1
2.5 cm × 110 m	-	-	-	-	-	-	-	-	-	-	3668-6871	1
3.0 cm × 100 m	3001-640	-	-	-	-	-	-	-	-	-	-	1
4.0 cm × 100 m	3001-652	-	-	-	-	-	-	-	-	-	-	1
5.0 cm × 100 m	3001-653	-	-	-	-	-	-	-	-	-	-	1
10.0 cm × 100 m	3001-672	-	-	-	-	-	-	-	-	-	-	1
15.0 cm × 100 m	3001-681	-	-	-	-	-	3031-681	-	-	-	-	1
1.5" × 300'	3001-651	-	-	-	-	-	-	3454-651	-	-	-	1
18" × 3800 m	300110115	-	-	-	-	-	-	-	-	-	_	1
Strips												
11 × 21.3 cm with 12 strips of 1.5 cm*	3001-964	-	-	-	-	-	-	-	-	-	-	100

* 1 Chr sheet divided into 1.5 cm lanes for running up to 12 samples in parallel For details on 3MM Chr products please visit the Cytiva website: cytiva.com

Extraction thimbles

These thimbles are widely used in Soxhlet extraction units, providing a safe, convenient, and efficient method of solvent extraction from solids and semi-solids. Soxhlet extraction is a widely used technique for the analysis of fats or pesticides in foods and soil materials as well as in many other procedures that involve a solid-liquid extraction.

Cellulose thimbles

High-performance cellulose thimbles

Cellulose extraction thimbles are produced from high-quality alpha cellulose cotton linter and have excellent mechanical strength and retention. The high purity of the materials ensures reliable and reproducible analytical results.

Standard single thickness thimbles have a wall thickness of approximately 1 mm (10.0 µm nominal particle retention).

Double thickness thimbles have a wall thickness of approximately 2 mm (6.0 µm nominal particle retention) for applications where higher retention and increased wet or dry strength or rigidity are required.

Standard cellulose thimbles

Thimbles of type 603 are made from high-quality cellulose, and 603 g thimbles are made from borosilicate glass fibers with an inorganic binder. For all automated extraction apparatus in common use, we offer thimbles whose dimensions are matched exactly to those of the thimble holders to ensure optimal fit.

Technical specifications

Standard thimbles

Grade	Material	Maximum temperature °C
603	Cellulose	130
603 g	Borosilicate glass fibers*	500

* With inorganic binder

High performance cellulose extraction thimbles

Thimble size selection guide

Thimble sizes should be selected carefully to fit extractors correctly. The different sizes represent the established practice of showing the internal diameter and overall length of the thimble in millimeters. Therefore, make an extra allowance for wall thickness when calculating external diameters. The thimble should pass through the narrower end of the upper extractor socket, allowing 1-2 mm clearance, and be 5-10 mm above the level of the top of the siphon tube.

High-performance cellulose thimbles

Dimensions (mm)*†	Catalog number	Quantity/pack	
Single thickness (nominal wall thickness = 1 mm)			
10 × 50	2800-105	25	
18 × 55	2800-185	25	
19 × 90	2800-199	25	
22 × 65	2800-226	25	
22 × 80	2800-228	25	
25 × 80	2800-258	25	
25 × 90	2800-259	25	
25 × 100	2800-250	25	
26 × 60	2800-266**	25	
26 × 100	2800-260	25	
28 × 80	2800-288	25	
28 × 100	2800-280	25	
28 × 120	2800-282	25	
30 × 80	2800-308	25	
30 × 100	2800-300	25	
33 × 80	2800-338	25	
33 × 94	2800-339	25	
33 × 100	2800-330	25	
33 × 118	2800-331	25	
37 × 130	2800-373	25	
41 × 123	2800-412	25	
43 × 123	2800-432	25	
60 × 180	2800-608#	25	
Double thickness (nominal wall thickness = 2 mm)			
16 × 60	2810-166	25	
22 × 80	2810-228	25	
25 × 80	2810-258	25	
26 × 60	2810-266	25	
33 × 80	2810-338	25	
33 × 94	2810-339	25	
43 × 123	2810-432	25	
90 × 200	2810-902	25	

* Internal diameter and external length

** Fits Soxtec[™] extractor

[†] See Thimble Size Selection Guide on p. XXX

* Nominal wall thickness 1.5 mm

Standard cellulose thimbles

Dimensions (mm)*†	Grade	Wall thickness (mm)	Catalog number	Quantity/pack
22 × 60	603	2.0	10350306	25
22 × 80	603	1.5	10350211	25
25 × 60	603	1.5	10350215	25
25 × 80	603	1.5	10350217	25
25 × 100	603	1.5	10350219	25
26 × 60	603	1.5	10350220	25
27 × 25 × 60	603T	1.0	10350416	25
27 × 80	603	1.5	10350223	25
28 × 60	603	1.5	10350225	25
28 × 80	603	1.5	10350226	25
28 × 100	603	1.5	10350227	25
30 × 80	603	1.5	10350234	25
30 × 100	603	1.5	10350236	25
33 × 60	603	1.5	10350238	25
33 × 80	603	1.5	10350240	25
33 × 31 × 80	603T	1.0	10350437	25
33 × 90	603	1.5	10350241	25
33 × 94	603	1.5	10350242	25
33 × 100	603	1.5	10350243	25
33 × 118	603	1.5	10350245	25
33 × 130	603	1.5	10350247	25
33 × 205	603	1.5	10350250	25
34 × 130	603	1.5	10350252	25
35 × 150	603	1.5	10350255	25
40 × 85	603	2.0	10350261	25
41 × 123	603	2.0	10350265	25
44 × 230	603	2.0	10350275	25
48 × 145	603	2.0	10350273	25
48 × 200	603	2.0	10350274	25
75 × 250	603	2.5	10350287	25
80 × 250	603	3.0	10350324	25

Internal diameter and external length
 See Thimble Size Selection Guide on p. 156

Standard cellulose thimbles for DIONEX[™] ASE

Extraction volume (mL)	Extraction system	Nominal wall thickness (mm)	Catalog number	Quantity/pack
11	200	1.0	10350106	25
22	200	1.0	10350108	25

Glass and quartz thimbles

High-purity glass microfiber thimbles

High-purity glass microfiber thimbles manufactured from 100% pure borosilicate glass are available for specialized applications. The thimbles are completely free of binders or additives and can be used at temperatures up to 500°C or when using solvents that are incompatible with cellulose thimbles. These thimbles are also used in pollution monitoring techniques (0.8 µm nominal particle retention). Typical thickness 1.7 mm.

Features and benefits

- Available in a range of sizes and wall thicknesses to suit your application
- · Designed to fit most commercially available Soxhlet extractors
- No binders are added

Applications

- Smoke stack gas monitoring
- Soxhlet extraction
- Analyzing pesticide residues
- Determining oil or fat content of foods (e.g. french fries)
- · Analysis of oil and grease in solid wastes

Quartz microfiber thimbles

Made from high-purity quartz microfiber, this thimble can withstand high temperatures (up to 1000°C). Suitable for solvent extraction, dioxin detection and smoke stack gas sampling.

Standard glass fiber thimbles

Thimbles of type 603 g are made from borosilicate glass fibers with inorganic binder. We also offer a selection of borosilicate glass thimbles without binder.

High-purity glass microfiber thimbles

High-purity glass and quartz microfiber thimbles

Dimensions (mm)*	Catalog number	Quantity/pack		
Glass microfiber thimbles—Grade HP-GF				
19 × 90	2814-199	25		
25 × 90, tapered	2814-259	25		
30 × 100	2814-300	25		
43 × 123	2814-432	25		
33 × 135	2814-533	25		
Quartz microfiber thimbles				
25 × 90, tapered	2812-259	10		
28 × 70, tapered	2812-287	10		

* See Thimble Size Selection Guide on p. XXX

Ordering information

Standard glass microfiber thimbles

Dimensions (mm)*	Wall thickness (mm)	Catalog number	Quantity/pack	
Grade 603 g (glass fiber with inorganic binder)				
10 × 38	1.0	10371103	25	
16 × 50	1.0	10371005	25	
19 × 90	1.0	10371007	25	
22 × 80	1.5	10371011	25	
23.8 × 68	1.5	10371114	25	
25 × 100	1.5	10371019	25	
28 × 60	1.5	10371025	25	
30 × 100	1.5	10371036	25	
33 × 94	1.5	10371042	25	
33 × 100	1.5	10371043	25	
33 × 118	1.5	10371045	25	
35 × 150	1.5	10371055	25	
44 × 230	1.5	10371075	25	
Glass microfiber (without binder)				
30 × 80	-	2811-308	25	

* Internal diameter and external length

Benchkote and Benchkote Plus

Benchkote

Benchkote[™] is an absorbent, impermeable material designed to protect laboratory surfaces against hazardous spills. The material features a high-quality, smooth, absorbent Whatman paper, which quickly absorbs liquid spills, and a laminated polyethylene layer that prevents flow through to the working surface. After use, the sheet is incinerated or disposed of according to local regulations.

Benchkote Surface Protector

Benchkote Plus

Benchkote Plus is a thicker, more absorbent material for more demanding applications and can absorb in excess of 0.75 liters of water per square meter.

Features and benefits

- Material is very strong, making it tear resistant, wet or dry.
- Smooth white surface can be written on with ink or pencil and lies flat.
- Suitable for saturation with disinfectant to protect benches where pathogens and other bacteria are present.
- Use polyethylene side up to collect deposits without absorption.
- · Paper side quickly absorbs liquid spills, preventing liquids from going through to the work surface.
- Spillages are trapped in the absorbent paper.
- · Benchkote can be incinerated after use; the polyethylene layer does not melt or drip but is rapidly consumed in the flames.

Applications

- Containing radiochemical spillage and avoiding contamination.
- Recovering spillage of expensive materials.
- Protecting hard surfaces to lessen impact.
- Water or solvent wick for humidity chambers.
- · Lining of chemical cabinets, laboratory bench drawers, and laboratory hoods.

Benchkote surface protector

Dimensions (mm)	Catalog number	Description	Quantity/pack
Benchkote surface protector			
460 × 570	2300-594	Pad (NA)	1 (50 sheets)
460 × 570	2300-599	Pad (EU)	1 (50 sheets)
460 × 570	2300-916	Sheets	50
460 × 570	2300-917	Sheets	100
-	2300-004	A4 sheets	1000
460 mm × 50 m	2300-731	Reel	1
920 mm × 50 m	2300-772	Reel	1
Benchkote Plus surface protector			
460 × 570	2301-916	Sheets	50
500 × 600	2301-6150	Sheets	50
600 mm × 50 m	2301-6160	Reel	1

Benchkote surface protector for lab-scale ÄKTA systems

Benchkote

Benchkote sheets for lab-scale ÄKTA systems protect the top buffer trays from buffer spillages and salt deposits.

Features and benefits

- Simplify daily and weekly preventive maintenance of the top buffer tray of your ÄKTA™ systems.
- Smooth, absorbent Whatman paper quickly absorbs spills.
- Laminated polyethylene layer prevents flow-through to the working surface.
- Sizes that fit the top buffer tray on ÄKTA go, ÄKTA avant, ÄKTA pure and ÄKTA start protein purification systems.
- Offered in three convenient pack sizes: 10/pk, 25/pk and 50/pk sheets.
- Convenient and easy to use.

Ordering information

Benchkote surface protector for ÄKTA systems

Dimensions (mm)	Catalog number	Description	Quantity/pack	
Benchkote sheet for ÄKTA				
420 × 300	2300-10060	Benchkote sheet for ÄKTA pure	10	
420 × 300	2300-10061	Benchkote sheet for ÄKTA pure	25	
420 × 300	2300-10062	Benchkote sheet for ÄKTA pure	50	
310 × 210	2300-10063	Benchkote sheet for ÄKTA start	10	
310 × 210	2300-10064	Benchkote sheet for ÄKTA start	25	
310 × 210	2300-10065	Benchkote sheet for ÄKTA start	50	
520 × 500	2300-10072	Benchkote sheet for ÄKTA avant	10	
520 × 500	2300-10073	Benchkote sheet for ÄKTA avant	25	
520 × 500	2300-10074	Benchkote sheet for ÄKTA avant	50	
233 x 290	2300-10092	Benchkote sheets for AKTA go	10	
233 x 290	2300-10093	Benchkote sheet for AKTA go	25	
233 x 290	2300-10094	Benchkote sheet for AKTA go	50	
Weighing papers

Kjeldahl weighing boats

Transfer your samples completely loss-free by simply dropping the entire weighing boat containing the sample into the acid solution in the Kjeldahl flask/digestion tube.

Features and benefits

- Excellent for weighing and transferring Kjeldahl samples safely and reliably
- Dissolves residue-free in the digestion solution without influencing the analytical results in any way
- · Made from very low nitrogen parchment paper without any glue or additives

Kjeldahl analysis weighing boat

Parchment paper

Features and benefits

- Transparent and smooth
- Simplifies sample transfer
- Quantitative transfer from paper

Technical specifications

Weighing papers

Product	Grade	Nominal thickness (µm)	Nominal weight (g/m²)
Weighing boat, ≤ 0.07% N	609	0.07	80
Pergamyne paper	2122	0.03	40
Parchment paper, ≤ 0.05% N	B-2	0.04	43

Ordering information

Weighing papers

Dimensions (mm)	Grade	Catalog number	Description	Quantity / pack
55 × 10 × 10	609	10313032	Kjeldahl Weighing Boat	100
100 × 100	2122	10347893	Sheets	500
150 × 150	2122	10347890	Sheets	500
3" × 3"	B-2	10347671	Sheets	500
4" × 4"	B-2	10347672	Sheets	500
6" × 6"	B-2	10347673	Sheets	500
12" × 12"	B-2	10347670	Sheets	500

Paper for ignition strength (IS) measurement

This certified Grade 2 is tested according to the procedure detailed in ASTM E 2187-09, Sections 9.3.1 and 9.3.2. The paper meets both the conditioned ($26.1 \pm 0.5 \text{ g}$, SD < 0.3 g) and dried ($24.7 \pm 0.5 \text{ g}$, SD < 0.3 g) weight requirements.

The lot-specific certificate can be downloaded from cytiva.com/certificates.

Features and benefits

- Each lot is guaranteed to meet the ASTM E 2187-09 specifications.
- Simplifies testing process by removing lot suitability testing.
- Just condition and use.

Ordering information

Paper for ignition strength (IS) measurement

Diameter (mm)	Catalog number	Grade	Quantity / pack
150	1002-147	Grade 2 (for IS testing)	100

Ashless clippings

Whatman ashless filter aids enhance filtration speed by coagulating precipitates or suspensions to form a thick retentive "prefilter" layer on top of normal filter paper.

Ordering information

Ashless clippings

Diameter (mm)	Catalog number	Quantity / pack
Ashless clippings	1703-050	500 gm

pH Indicator and test papers

Whatman pH indicator and test papers combine ease of use with exceptional accuracy and consistency.

The convenience of using indicator papers for the rapid determination of pH values has led to many applications in laboratories and industry.

Features and benefits

- Instant pH readings
- Accurate for a wide range of routine pH testing
- Inexpensive
- Convenient and portable for field use

pH indicators

Strips type CF (color bonded dye system)

Individual plastic support strips carry four different segments of dye-impregnated indicator papers. The resulting combination of color differences gives an extremely clear and accurate visual pH value. All the dyes are chemically bonded to the paper and cannot be leached into solution; problems associated with contamination of the sample and resultant anomalous readings are avoided.

Strips type CS (integral comparison chart)

Each test strip has a central segment of indicator dye and, printed alongside, eight or more different color segments marked with corresponding pH values for matching purposes.

The pH test value can be read off by direct comparison of the test strip color and the color bars. Excellent for colored solutions, when any changes in color of the paper stock are automatically cancelled out.

Dispensers type TC (triple color band)

The strip has three separate indicator dye color bands. The individual combination of color change resulting from each test is compared with the color-coded comparison chart printed on the dispenser, giving improved speed and accuracy in reading.

Dispensers type SR (standard range)

Tapes for this popoular pH indicator dispenser are available in both full range and standard narrow ranges.

Indicator books

The book format is particularly suitable for educational and industrial use. In schools they are economical because the amount of paper per student can be carefully controlled.

pH indicators

Acid-alkali test papers

Litmus blue and litmus red

These easy-to-use test papers facilitate a general test for acid or alkaline reaction. The change occurs around pH 5-8. They are particularly recommended for educational use.

Congo red

This test paper changes color from blue to red in the range pH 3-5 for the determination of neutralization point in strong acid/weak alkali reactions.

Phenolpthalein

This white paper changes to pink at pH 8.3 and becomes red at pH 10. It is useful for the determination of the neutralization point in weak acid/strong alkali reactions.

Specialized test papers

Lead acetate test paper

Used for detecting hydrogen sulfide, this rapid qualitative test paper, when wetted with distilled water, can detect as little as 5 ppm of H_2S in the atmosphere or in a gas stream. Hydrogen peroxide can be detected with this paper by preblackening the paper in H_2S . Concentrations as low as 4 ppm can be detected.

Potassium iodide test paper

Used for detecting chlorine and other oxidizing agents. In acid solution, oxidizing agents react with the iodide in the test paper to liberate iodine. The paper will turn blue in the presence of an oxidizing agent (e.g. CI_2 , Br_2 , H_2O_2 , HNO_2 etc.).

Universal indicator papers

Universal indicator papers have been impregnated with a mixture of several indicators. On contact with the sample solution they assume a particular color. A check against the color comparison table supplied allows the pH to be determined.

Ordering information

pH indicators and test papers

Dimensions (mm)	pH range	Catalog number	Description	Packaging	Quantity/pack
Strips					
6 × 80	0.0 to 14.0	2613-991	Color bonded	100 strips	1100 strips
6 × 80	4.5 to 10.0	2614-991	Color bonded	100 strips	1100 strips
6 × 85	0.0 to 14.0	10362000	Panpeha Plus, non bleeding	Strip, 4 sections	100
6 × 85	2.0 to 9.0	10362010	Panpeha Plus, non bleeding	Strip, 3 sections	100
9 × 85	0.0 to 14.0	10360005	Panpeha 112	-	200
11 × 100	1.0 to 12.0	2612-990	Integral comparison strip	200 strips	1200 strips
11 × 100	1.8 to 3.8	2626-990	Integral comparison strip	200 strips	1200 strips
11 × 100	3.8 to 5.5	2627-990	Integral comparison strip	200 strips	1200 strips
11 × 100	5.2 to 6.8	2628-990	Integral comparison strip	200 strips	1200 strips
11 × 100	6.0 to 8.1	2629-990	Integral comparison strip	200 strips	1200 strips
11 × 100	8.0 to 9.7	2630-990	Integral comparison strip	200 strips	1200 strips
11 × 100	9.5 to 12.0	2631-990	Integral comparison strip	200 strips	1200 strips
Dispensers (reel)					
10 mm × 5 m	1.0 to 11.0	2611-628	Three colors	-	1
7 mm × 5 m	1.0 to 14.0	2600-100A	Standard full range	-	1
7 mm × 5 m	0.5 to 5.5	2600-101A	Standard narrow range	-	1
7 mm × 5 m	4.0 to 7.0	2600-102A	Standard narrow range	-	1
7 mm × 5 m	6.4 to 8.0	2600-103A	Standard narrow range	-	1
7 mm × 5 m	8.0 to 10.0	2600-104A	Standard narrow range	-	1
7 mm × 5 m	1.0 to 11.0	10362030	Panpeha	-	1
Books					
-	1.0 to 11.0	2600-500	-	-	1 carton*10 packs of 10 books each, 20 strips per book

* 1 carton contains 10 packs of 10 books, product is 20 strips per book

Papers for healthcare applications

Antibiotic assay discs

For determining the type of causal agent of infectious diseases and for checking their sensitivity to antibiotics and chemotherapeutic agents in vitro by means of the inhibition zone determination method. The antibiogram allows rational and selective chemotherapy.

The test discs can be coated with chemotherapeutic agents, placed on the innoculated nutrient agar and incubated. The size of the inhibition zone is a measure for the effectiveness of the substances.

Ordering information

Antibiotic assay (AA) paper

Diameter (mm)	Catalog number	Quantity/pack
6	2017-006	1000
9	2017-009	1000
13	2017-013	1000

Grade 470

Soft surface. For gelatinous samples. Used for the absorption of culture media, as a blotting paper, for electrophoresis, and amino acid chromatography.

Ordering information

Papers for healthcare applications

Dimensions (mm)	Grade	Catalog number	Format	Quantity/pack
460 × 570	470	10318493	Sheets	100
1.5" × 450'	470	10539028	Reel	1
12.7	740E	10328170	Circles	1000
1.5" × 550'	740E	10539167	Reel	1

Phase separator paper

Whatman 1PS phase separator is a high-grade filter paper impregnated with a stabilized silicone that renders it hydrophobic, retaining the aqueous phase and passing the solvent phase through.

Features and benefits

- Ease of use—no special training required.
- Any number of separations can be processed together.
- Staff involvement in routine separations is at a minimum.

Automatic cut-off, separatory funnel replacement

After being shaken, the mixed phases are simply poured directly into the 1PS circle, which is quadrant-folded in a funnel. The separation is extremely rapid so it is unnecessary to wait until the two phases have settled into separate layers. Droplets are automatically separated after only a few moments, giving a solvent phase completely free of the aqueous phase.

In many applications, 1PS can replace the use of separatory funnels. The solvent phase flows through the paper quickly and cleanly. It then stops automatically, leaving the aqueous phase completely in the paper. This feature is particularly important when carrying out a large number of routine solvent extractions at the same time. Samples can be shaken with solvent in stoppered conical flasks or test tubes and transferred directly to funnels containing 1PS.

Unsupervised separation

A key benefit of the 1PS method is that cut-off is automatic and complete as soon as the solvent phase has passed through*.

Water may break through upon prolonged standing.

Ordering information

1PS phase separators

Diameter (mm)	Catalog number	Quantity/pack
70	2200-070	100
90	2200-090	100
110	2200-110	100
125	2200-125	100
150	2200-150	100
185	2200-185	100
240	2200-240	100
270	2200-270	100

1PS Phase separator papers

Lens cleaning tissue

Lenses and other optical surfaces made from glass, quartz or plastic can be easily scratched if you do not clean them with a very soft surface. High-quality Whatman lens cleaning tissue provides the solution. The tissue is chemically pure and free from silicones and other additives. Most importantly, it can be relied on to safely remove surface moisture and grease.

Features and benefits

- Soft texture will not damage lenses or optical surfaces.
- Chemically pure tissue is free from silicones and other additives.
- High absorbency ensures the safe removal of surface moisture and grease.
- Thickness 0.035 to 0.040 mm.
- Very strong and leaves no fibers.

Ordering information

Lens cleaning tissues

Dimensions (mm)	Catalog number	Packaging	Quantity/pack
Grade 105 (sheets)			
100 × 150	2105-841	25 wallets of 25 sheets	25
200 × 300	2105-862	-	100
460 × 570	2105-918	-	500

Moisture testing papers

Moisture test paper for use when drying samples during moisture assessment.

Ordering information

Moisture testing papers

Dimensions (mm)	Material	Catalog number	Quantity/pack
90	Borosilicate glass	5401-090E	100

Lens cleaning tissue

Filter selection made easy

Use our online Whatman filter selector to find the right filter for your sample and application.

> Cytiva 2 C a Crytivalifesciences.com

> > Whatman Filter

Selector

Find the optimal Whatman filter for you

selector.

Looking for a filter paper, membrane filter, or syringe filter? Let us help you find the optimal filter for your needs to ensure reliable analysis with our filter

Which filter type are you

interested in?

LAB FILTRATION

cytiva.com/whatmanfilterselector

07 Diagnostic assay components

Cytiva offers a wide selection of high performance, customizable components and solutions for immunoassay and molecular diagnostic applications. Our extensive product range includes components for lateral-flow and flow-through assays, track-etched membranes for microbiological applications and sample collection cards. Our team of support experts can help you select the best-suited technologies and optimize components for your diagnostic assay.

Point-of-care immunoassays22	28
Lateral-flow immunoassays22	9
Sample pads23	0
Blood separators23	2
Conjugate release pads23	4
Membranes23	6
Membrane selection for lateral flow23	7
Membrane selector according to sample type23	9
Absorbent pads24	5
Lateral flow starter packs24	7
Flow-through immunoassays24	8
Nitrocellulose membranes24	8
Absorbent pads24	8
Dipstick colorimetric assays25	0
Track-etched membranes for diagnostic applications	51
Sample collection cards25	53
Cytiva Diagnostic Services	55

.. 100

Point-of-care immunoassays

Rapid point-of-care (POC) tests are among the most widely used analytical technologies in diagnostics. Offering high performance, ease of use and cost effectiveness, diagnostic rapid tests can deliver semiquantitative or quantitative results. Point-of-care immunodiagnostic assays can include:

- Lateral-flow immunoassays
- Flow-through immunoassays
- Dipstick colorimetric assays

Cytiva provides a range of technology components for point-of-care immunodiagnostic assays. We produce a comprehensive range of cellulose and glass fiber substrates and nitrocellulose membranes to an assured quality, ensuring accurate and reproducible results.

Lateral-flow immunoassays

Sample pads	230
Blood separators	232
Conjugate release pads	234
Membranes	236
Absorption pads	245

Flow-through immunoassays

Nitrocellulose membranes	243
Absorbents	250

Dipstick colorimetric assays

Cellulose pads	
----------------	--

Lateral-flow immunoassays

With a diverse array of products, Cytiva is one of the leading suppliers in lateral-flow technology. Our offering includes our wide range of blood separation products, conjugate release pads, nitrocellulose membranes, and absorbents.

Developments in lateral-flow immunoassay systems allow for single step assays that require only the addition of a sample. The sample flows through the device and comes into contact with dried reagents, usually a tagged secondary antibody. The antibody and analyte migrate to a capture zone of membrane-immobilized antibody. Any unreacted tagged antibody flows past the capture zone.

Components of a lateral flow immunoassay

Diagnostic assay components – Point-of-care immunoassays

Sample pads for lateral-flow immunoassays

Sample pads begin the assay by transporting the sample from the point of application to the test components.

Features and benefits

- · Consistent absorbency and wicking rates: Ensures test-to-test reproducibility
- Product manufactured in controlled environments from highest-quality materials: No false results due to sample contamination
- Low protein binding: Minimal loss of analyte, so test sensitivity is maintained
- Naturally hydrophilic: Rapid rewetting after prolonged storage
- Wide range of thickness, absorbency and wicking rate
- Compatible with most styles of housings
- Minimal leakage along the strip: No contamination of test results

Sample pads selection tree

Technical specifications

Sample pads for lateral-flow immunoassays

Product	Material	Properties	Thickness (µm @ 53kPA)	Wicking rate (s/4 cm)	Water absorption (mg/cm²)
CF1	100% cotton linter Light, thin grade suitable for small volume	176	207.3	18.7	180
CF3	100% cotton linter Medium weight	322	174.3	34.6	190
CF4	100% cotton linter Medium weight	482	67.3	49.9	390
Standard 14	Bound glass fiber	Faster flow than cotton, with lower sample retention	355	23.1	50.9
Standard 17	Bound glass fiber	Faster flow than cotton, with lower sample retention	370	34.5	44.9
GF/DVA	Bound glass fiber	Works with saliva samples and as a blood separator	785	28.2	93
LF1	Bound glass fiber	Works with whole blood or serum samples and as a blood separator	247	35.6	25.3
MF1	Bound glass fiber	Works with whole blood or serum samples and as a blood separator	367	29.7	39.4
VF2	Bound glass fiber	Works with whole blood or serum samples and as a blood separator	785	23.8	86.2
Grade 470	100% cotton linter Medium weight	840	77	78	210

Ordering information

Sample pads for lateral-flow immunoassays

Grade	Description	Catalog number	Quantity/pack
CF1	22 mm × 50 m	8111-2250	1
CF3	22 mm × 50 m	8113-2250	1
CF4	22 mm × 50 m	8114-2250	1
STD 14	22 mm × 50 m	8133-2250	1
STD 17	22 mm × 50 m	8134-2250	1
LF1	17 mm × 50 m	8121-1750	1
MF1	22 mm × 50 m	8122-2250	1
VF2	17 mm × 50 m	8124-1750	1
Grade 470	22 mm × 50 m	10539995	1

Other formats and sizes available - please enquire for more detail

Blood separators for lateral-flow immunoassays

Cytiva offers a family of blood separators to meet the increasing demands and strict requirements of the rapid diagnostic market. These products enable whole blood analysis, with no red cell hemolysis.

Features and benefits

- Separation in 30–120 seconds: Rapid assays save time
- No appreciable red cell hemolysis: Improved reproducibility
- Consistency of materials: Reliability
- Materials suitable for use in a range of tests: Flexibility in test optimization
- Choice of separation times: Allows for test optimization
- Separators appropriate for a range of blood volumes: Enhances the separation rate according to the volume of blood available

Blood separator selection tree

Technical specifications

Blood separators for lateral-flow immunoassays

Product	Properties	Thickness (μm @ 53kPA)	Wicking rate (s/4 cm)	Water absorption (mg/cm²)
GF/DVA	Bound glass fiber	785	28.2	93
LF1	May be used for lateral flow assays. Works well with one drop of whole blood	247	35.6	25.3
MF1	Used for lateral- or vertical-flow assays. Typically used for whole-blood volumes around 100 μL	367	29.7	39.4
VF2	Vertical separator used as single or multiple layers for separation of a wide range of blood volumes	785	23.8	86.2
Fusion 5	Can be used as a lateral flow blood separator with two drops of whole blood	370	43.9	42.3

Ordering information

Blood separators for lateral-flow immunoassays

Grade	Description	Catalog number	Quantity/pack
LF1	17 mm × 50 m	8121-1750	1
MF1	22 mm × 50 m	8122-2250	1
VF2	17 mm × 50 m	8124-1750	1
Fusion 5	22 mm × 50 m	8151-9915	1
GF/DVA	22 mm × 50 m	8145-2250	1

Other formats and sizes available – please enquire for more detail

Conjugate release pads for lateral-flow immunoassays

Conjugate release pads are critical to lateral-flow immunoassays. To ensure consistent performance, the conjugate must dry without damage or aggregation and release rapidly when the sample comes into contact with it.

Whatman conjugate release pads do not require treatment prior to conjugate application, as they are inherently hydrophilic. The open structure of the material allows rapid penetration by both conjugate and sample.

Features and benefits

- · Higher level of conjugate release: Less waste means reduced reagent costs
- · Higher capture line intensity, as more conjugate gets to the capture line: Improved sensitivity
- Pad rewets naturally and rapidly every time: Improved consistency

Technical specifications

Conjugate release pads for lateral-flow immunoassays

Grade	Thickness (µm @ 53kPA)	Wicking rate (s/4 cm)	Water absorption (mg/cm²)	Percent release of gold conjugate (after 90 s)
Standard 14	355	23.1	50.9	75
Standard 17	370	34.5	44.9	75
Fusion 5	370	43.9	42.3	> 94
Rapid 24	348	N/A	N/A	≥80
Rapid 27	370	N/A	N/A	≥80

Ordering information

Conjugate release pads for lateral-flow immunoassays

Grade	Description	Catalog number	Quantity/pack
Standard 14	22 mm × 50 m	8133-2250	1
Standard 17	22 mm × 50 m	8134-2250	1
Fusion 5	22 mm × 50 m	8151-9915	1
Rapid 24	22 mm × 50 m	8131-2250	1
Rapid 27	22 mm × 50 m	8132-2250	1
Accuflow G	20 mm × 75 m	10537200	1

Other widths are available: please contact your Cytiva representative for more information.

Membranes for lateral-flow immunoassays

Nitrocellulose membranes are a key functional component of lateral-flow immunoassays. The membrane must provide sufficient protein binding to produce a sharp and intense capture line, but at the same time the level of nonspecific background must be low enough for easy interpretation of the results.

Nitrocellulose membranes are available in a range of wicking rates and formulations. The wicking rate of a membrane has a significant impact on test sensitivity.

FF120HP membranes

Features and benefits

- Backed membrane
- · Increased mechanical strength of the membranes, simplifying use in reel-to-reel machines
- Direct contact is prevented between the nitrocellulose material and the adhesive from the lamination card where the test elements are mounted

Unbacked membrane

• Enables assay suitability tests of both air and belt side of the membrane

Membrane selection for lateral flow

A nitrocellulose membrane is a key part of any lateral flow immunoassay, vital to the sensitivity and specificity of your test. This guide highlights the benefits and differences of each Whatman product family to help simplify your selection process.

The Whatman Faster Flow, Higher Performance Membrane (FFHP)

Description	A thinner membrane (200 μm thick including backing) with reduced surfactant content.	
When to use	Quantificative assays or where you can reduce reagent dispensing to save cost on reagents. Designed for lateral flow assays.	
Grade variants	FF80HP — 60-100 second flow FF120HP — 90-150 second flow FF170HP — 140-200 second flow	FFHP Plus Thick Membrane

The Whatman Higher Surfactant Membrane (FFHP Plus)

Description	Higher surfactant membrane to overcome hydrophobic issues. 200 μ m thick membrane incl. backing.
When to use	When using viscous samples and you wish to reduce reagent dispensing rates to save cost.
Grade variants	FF80HP PLUS — 60-100 second flow FF120HP PLUS — 90-150 second flow FF170HP PLUS — 140-200 second flow

The Whatman Thicker Membrane (FFHP Plus Thick)

Description	Thicker membrane (235 µm thick including backing) and higher surfactant content
When to use	Optimised for when looking for easy swap-out of competitor grades.
Grade variants	FF80HP PLUS THICK — 60-100 second flow; FF120HP PLUS THICK — 90-150 second flow; FF170HP PLUS THICK — 140-200 second flow;

The Whatman Post-Treatment Membrane (Immunopore™)

Description	Structurally different membrane as treated with surfactant post-drying. 200 μm thick membrane.
When to use	When looking for more consistent membrane performance than wet-treated surfactant products.
Grade variants	Immunopore RP — 90-150 second flow Immunopore FP — 110-150 second flow Immunopore SP — 160-220 second flow

The Whatman High-Surfactant Membrane (Prima)

Description	High concentration surfactant nitrocellulose membrane. Note: Product may contain some surface dust, due to manufacturing process.
When to use	When you need a very quick flow membrane. Works very well with dairy.
Grade variants	Prima40 — 40 second flow Prima80 — 80 second flow Prima120 — 120 second flow

The Whatman Unbacked Membrane (AE)

Description	Unbacked nitrocellulose, 120 µm thick
When to use	For experienced users as trickier to handle, typically available at lower cost.
Grade variants	AE100 — 90-120 second flow AE99 — 120-160 second flow AE98 — 160-210 second flow

Note: Flow time is measured by timing how long water takes to flow cross-web to completely fill 4 centimetres of membrane. This is an indication of how a sample will flow in your assay, but times with serum or other liquids will differ.

• Test material side by side

• Note that unbacked membranes are more difficult to use for reel-to-reel applications

• This is only an example based on past experience, we encourage you to screen as many membranes as possible during development

FF120HP membranes

Unbacked membranes

AE nitrocellulose membranes

Constructed of 100% nitrocellulose, the AE membrane offers a higher level of purity and performance than that seen in post-treated materials. AE membranes have been used extensively since the development of the original lateral flow tests and have become a standard for manufacturers worldwide. There is a long history of success and experience for assay optimization using these products.

AE membranes are unbacked, which means either belt or air side of the membrane can be used.

Technical specifications

AE nitrocellulose membranes

Grade	Capillary rise (s/4 cm)	Total caliper (μm)	Properties
AE98	160–210	120	An unsupported membrane that gives good line intensity for use with low-viscosity samples
AE99	120–160	120	A general-purpose membrane for use with most sample types giving a good combination of sensitivity with fast wicking
AE100	90–120	120	A very fast wicking membrane for use with highly viscous samples (e.g. undiluted serum)

Ordering information

AE nitrocellulose membranes

Grade	Description	Catalog number	Quantity/pack
AE99	25 mm × 50 m	10548081	1
AE98	25 mm × 50 m	10549916	1
AE100	25 mm × 50 m	10549867	1

Other widths are available: please contact your Cytiva representative for more information.

Backed membranes

Immunopore nitrocellulose membranes

Immunopore membrane is a plastic-backed nitrocellulose membrane. A proprietary polymer is included in the membrane matrix to ensure rapid rewetting and low background signal, removing protein-binding interference commonly experienced with surfactants.

Technical specifications

Immunopore nitrocellulose membranes

Grade	Capillary rise (s/4 cm)	Total caliper (μm)	Properties
Immunopore XP	65-85	200	Fastest-flowing membrane, for extremely viscous samples
Immunopore RP	90–150	200	Fast-flowing membrane, yielding shorter test times while still retaining excellent capture line intensity and reproducibility
Immunopore FP	140–200	200	Excellent general membrane that offers high capture line intensity coupled with fast flow/ wicking rate
Immunopore SP	190–280	200	Highly suitable for use with low-viscosity samples when maximum capture line intensity is required

Ordering information

Immunopore nitrocellulose membranes

Grade	Description	Catalog number	Quantity/pack
Immunopore XP	25 mm x 50 m	10549606	1
Immunopore RP	25 mm × 50 m	78356403	1
Immunopore FP	25 mm × 50 m	78336403	1
Immunopore SP	25 mm × 50 m	78316404	1

Other widths are available: please contact your Cytiva representative for more information

Prima membranes

A membrane with a high concentration of surfactant, formulated for when you need a very quick membrane. Works especially well with dairy (sp) and other viscous samples.

Note: Product may contain some surface dust, due to manufacturing process.

Technical specifications

Prima membranes

Grade	Capillary rise (s/4 cm)	Total caliper (μm)	Properties
Prima 40	38-52	200	Faster flowing membrane offered by Cytiva

Ordering information

Prima membranes

Grade	Description	Catalog number	Quantity/pack
Prima 40	25 mm X 50 m	10549713	1

Other widths are available: please contact your Cytiva representative for more information.

FFHP nitrocellulose membranes

FF High Performance (HP) membranes are part of the family of nitrocellulose membranes that are directly cast onto a plastic film. The FFHP membranes are a result of improved membrane casting procedures, which result in membranes with high reproducibility, enhanced intra- and inter-lot consistency and sharper lines. The surface is uniform without any unincorporated nitrocellulose powder, and the fine structure fiber distribution provides large internal surfaces for binding proteins.

Features and benefits

- Backed membrane
- · Increased mechanical strength of the membranes, simplifying use in reel-to-reel machines
- Direct contact is prevented between the nitrocellulose material and the adhesive from the lamination card where the test elements are mounted

Technical specifications

FFHP nitrocellulose membranes

Grade	Capillary rise (s/4 cm)	Total caliper (μm)	Properties
FF80HP	60 — 100	200	A very fast wicking membrane for use with highly viscous samples (e.g. undiluted serum)
FF120HP	90 — 150	200	A general-purpose membrane for use with most sample types
FF170HP	140 — 200	200	A membrane for use with low viscosity samples
FF80HP Plus	60 — 100	200	A version of the FF80HP membrane with additional surfactant
FF120HP Plus	90 — 150	200	A version of the FF120HP membrane with additional surfactant
FF170HP Plus	140 — 200	200	A version of the FF170HP membrane with additional surfactant
FF80HP Plus Thick	60 — 100	235	A thicker version of the FF80HP Plus, to aid sample flow
FF120HP Plus Thick	90 — 150	235	A thicker version of the FF120HP Plus, to aid sample flow
FF170HP Plus Thick	140 — 200	235	A thicker version of the FF170HP Plus, to aid sample flow

Ordering information

Immunopore nitrocellulose membranes

Grade	Dimensions	Format	Catalog number	Quantity / pack	
FF80HP	20 mm × 50 m	Reel	10547002	1	
FF80HP	25 mm × 50 m	Reel	10547003	1	
FF80HP	210 mm × 297 mm	A4 sheet	13549206	10	
FF80HP	60 (25) mm × 300 mm	60mm Laminate Cards w/25 mm membrane	10547020	100	
FF120HP	20 mm × 50 m	Reel	10547006	1	
FF120HP	25 mm × 50 m	Reel	10547001	1	
FF120HP	210 mm × 297 mm	A4 sheet	13549205	10	
FF120HP	60 (25) mm × 300 mm	60mm Laminate Cards w/25 mm membrane	10547021	100	
FF170HP	20 mm × 50 m	Reel	10547004	1	
FF170HP	25 mm × 50 m	Reel	10547005	1	
FF170HP	210 mm × 297 mm	A4 sheet	13549204	10	
FF170HP	60 (25) mm × 300 mm	60mm Laminate Cards w/25 mm membrane	10547023	100	
FF80HP Plus	20 mm × 100 m	Reel	10547121	1	
FF80HP Plus	25 mm × 100 m	Reel	10547119	1	
FF80HP Plus	210 mm × 297 mm	A4 sheet	10547118	10	
FF80HP Plus	60 (25) mm × 300 mm	60mm Laminate Cards w/25 mm membrane	10547128	100	
FF120HP Plus	20 mm × 100 m	Reel	10547126	1	
FF120HP Plus	25 mm × 100 m	Reel	10547125	1	
FF120HP Plus	210 mm × 297 mm	A4 sheet	10547117	10	
FF120HP Plus	60 (25) mm × 300 mm	60mm Laminate Cards w/25 mm membrane	10547129	100	
FF170HP Plus	20 mm × 100 m	Reel	10547122	1	
FF170HP Plus	25 mm × 100 m	Reel	10547120	1	
FF170HP Plus	210 mm × 297 mm	A4 sheet	10547116	10	
FF170HP Plus	60 (25) mm × 300 mm	60mm Laminate Cards w/25 mm membrane	10547142	100	
FF80HP Plus Thick	20 mm × 100 m	Reel	10547155	1	
FF80HP Plus Thick	25 mm × 100 m	Reel	10547156	1	
FF80HP Plus Thick	210 mm × 297 mm	A4 sheet	13547204	10	
FF80HP Plus Thick	60 (25) mm × 300 mm	60mm Laminate Cards w/ 25mm membrane	10547154	25	
FF120HP Plus Thick	20 mm × 100 m	Reel	10547152	1	
FF120HP Plus Thick	25 mm × 100 m	Reel	10547149	1	
FF120HP Plus Thick	210 mm × 297 mm	A4 sheet	13547200	10	
FF120HP Plus Thick	60 (25) mm × 300 mm	60mm Laminate Cards w/25 mm membrane	13547202	25	
FF170HP Plus Thick	20 mm × 100 m	Reel	10547153	1	
FF170HP Plus Thick	25 mm × 100 m	Reel	10547147	1	
FF170HP Plus Thick	210 mm × 297 mm	A4 sheet	13547201	1	
FF170HP Plus Thick	60 (25) mm × 300 mm	60mm Laminate Cards w/25 mm membrane	13547203	25	

Other widths are available: please contact your Cytiva representative for more information.

Absorption pads

Absorption pads at the downstream end of tests control sample flow along the strip. Cytive has developed pads with excellent wicking characteristics that consistent performance. Choosing an absorbent pad with sufficient capacity is an important consideration when designing an immunoassay.

Features and benefits

- Consistent absorbency: Ensures test-to-test reproducibility
- Product manufactured in controlled environments from highest-quality materials: No false results due to contamination
- Naturally hydrophilic: Minimal loss of analyte, so test sensitivity is maintained
- Wide range of thickness, absorbency and wicking rate: Rapid rewetting after prolonged storage
- Minimal leakage along the strip: No contamination of test results

Absorption pads selection tree

Technical specifications

Absorption pads

Product	Material	Properties	Thickness (µm @ 53kPA)	Wicking rate (s/4 cm)	Water absorption (mg/cm²)
CF3	100% cotton linter	Medium weight	322	174.3	34.6
CF4	100% cotton linter	Medium weight	482	67.3	49.9
CF5	100% cotton linter	Medium weight	954	63.3	99.2
CF7	100% cotton linter	Thick material suitable for high sample volume	1873	35	252.3

Ordering information

Absorption pads

Grade	Description	Catalog number	Quantity/pack
CF3	22 mm × 50 m	8113-2250	1
CF4	22 mm × 50 m	8114-2250	1
CF5	22 mm × 50 m	8115-2250	1
CF7	22 mm × 50 m	8117-2250	1

Other widths are available: please contact your Cytiva representative for more information.

Absorbent pad CF4

Lateral flow starter packs

Each starter kit contains a range of membrane grades to facilitate testing when developing a lateral flow test.

Technical specifications

Lateral flow starter packs

Component	Grade	Format	Quantity eeach
Blood separators/sample pad	MF1, LF1, Fusion 5, VF2, GF/DVA, CF1, CF3, CF4, Grade 470, ST14, ST17	A4 sheets	3
Conjugate release	ST14, ST17, Fusion 5	A4 sheets	3
Absorbent pad	CF3, CF4, CF5, CF7, Grade 470	A4 sheets	3
Nitrocellulose membrane	FF80HP, FF120HP, FF170HP, FF80HP Plus, FF120HP Plus, FF170HP Plus, FF80HP Plus Thick, FF120HP Plus Thick, FF170HP Plus Thick, Prima 40, Immunopore RP, Immunopore SP, Immunopore FP, Immunopore XP	A4 sheets	3

FF80HP Plus Thick

Ordering information

Lateral flow starter packs

Name	Description	Catalog number
CF/GF starter pack	A sample pack containing all of our cellulose and glass fiber pads, including all blood separators, sample pads, conjugate pads and absorbent pads	29363634
Nitrocellulose membrane starter pack	A sample of all of our nitrocellulose grades for LFA	10547158
Combo starter pack	A pack containing both our CF/GF and nitrocellulose starter packs	29428668

FF120HP Plus Thick

FF170HP Plus Thick

Flow-through immunoassays

In a flow-through immunoassay the sample is applied directly to the membrane surface and allowed to wick through the membrane into an absorbent paper below.

Nitrocellulose membranes

Small-pore unsupported membranes such as BA83 and BA85 can be used; they are highly sensitive small-pore membranes with large surface area and high protein binding capacity. However, they have to be carefully encapsulated, ensuring good contact between the membrane and the absorbent, to give good flow.

Features and benefits

- Manufactured for vertical-flow assays: Removes problems caused by capillary rise
- Small pore structure: Accurate results; low nonspecific binding; greater sensitivity
- One hundred percent pure nitrocellulose: Provides high binding capacity

Absorbents

The absorbents used for flow-through assays must wick quickly and be highly water absorbent. The volumes of liquids used in flow-through assays can be much higher than those in lateral flow. Thicker cellulose materials with fast wicking are therefore the material of choice.

Flow-through assay

Absorbent pad CF7

Technical specifications

Nitrocellulose membranes and absorbent pads

Grade	Description	Pore size (µm)	Thickness (µm @ 53kPA)	Wicking rate (s/4 cm)	Water absorption (mg/cm²)
BA 79	Membrane	0.10	120	-	-
BA 83	Membrane	0.20	120	-	-
BA 85	Membrane	0.45	120	-	-
CF4	Absorbent	-	482	67.3	49.9
CF5	Absorbent	-	954	63.3	99.2
CF6	Absorbent	-	1450	65	136.3
CF7	Absorbent	-	1873	35	252.3

Ordering information

Nitrocellulose membranes and absorbent pads

Grade	Dimensions	Description	Catalog number
BA79	-	BA Nitrocellulose Membrane	Please inquire
BA83	300 mm × 600 mm	BA Nitrocellulose Membrane	10401380
BA85	300 mm × 600 mm	BA Nitrocellulose Membrane	10401180
CF4	22 mm × 50 m	Absorbent	8114-2250
CF5	22 mm × 50 m	Absorbent	8115-2250
CF6	22 mm × 50 m	Absorbent	8116-2250
CF7	22 mm × 50 m	Absorbent	8117-2250

Other widths are available: please contact your Cytiva representative for more information.

Dipstick colorimetric assays

Dipstick colorimetric assays, in which a cellulose pad is impregnated with a color reagent, are widely used in everything from urine testing to environmental assays. The base cellulose is a key part of the system, and the correct choice of absorbency, wicking rate, and wet strength are critical to producing a working assay. The Cytiva range of cellulose materials for dipstick colorimetric assays offers highly consistent and inert substrates for absorption of the active chemicals required for development of dipstick tests.

The purity of the cellulose base material coupled with our quality manufacturing practices make these papers an excellent choice for large-scale manufacturing.

Dipstick colorimetric assays

Technical specifications

Dipstick colorimetric assays

Grade	Thickness (µm @ 53kPA)	Water absorption (mg/cm²)
CF1	176	18.7
CF2	172	16.1
CF3	322	34.6
CF4	782	49.9
CF6	1450	136.3
CF7	1873	252.3

Ordering information

Dipstick colorimetric assays

Grade	Dimensions	Catalog number	Pack/size
CF1	22 mm × 50 m	8111-2250	1
CF2	22 mm × 50 m	8112-2250	1
CF3	22 mm × 50 m	8113-2250	1
CF4	22 mm × 50 m	8114-2250	1
CF6	22 mm × 50 m	8116-2250	1
CF7	22 mm × 50 m	8117-2250	1

Track-etched membranes for diagnostic applications

Cytiva provides a range of Whatman track-etched membranes (TEMs) whose advanced technical specifications make them an outstanding choice for a wide range of diagnostic applications.

TEMs have very tightly controlled pore size distribution. This allows for quantification of cells or microorganisms, which are captured on the membrane surface. TEMs are usually transparent at larger pore sizes, which allows complete transmission of light, ensuring excellent signal-to-noise ratio.

Choose Cyclopore[™] or Nuclepore[™] track-etched membranes for applications including:

- Cell capture
- Particle-capture assays
- Biosensors

Features	Benefits
Biologically inert	Whole cell assays can be performed.
Low protein binding and low extractables	There is no interference with assay results because of membrane.
Choice of surface properties (hydrophilic and hydrophobic version available)	Assays can be designed with the appropriate flow or retention characteristics.
Does not bind stains or labels	Gives lower background signal than traditional materials.
True surface capture on a flat, smooth surface	Cells or particles are highly visible or available for sample recovery by backflushing.
Low hold-up volume	Practically all the applied sample is available for analysis.
Controllable optical properties (transparent, translucent, and/or dyed)	The optical properties can be chosen to ensure excellent signal-to-noise ratio. Clear materials allow complete transmission of light, whereas dyed varieties block signal from behind the membrane.
PC or PET material	Allows easy attachment to a range of housings for design of components.

Application examples

Cell capture

Since TEMs have tightly controlled filtration characteristics, they can be used in cell capture applications. This application allows for easier identification of marked cells in a number of formats. The retention of cells upon the membrane surface allows cells to be stained and observed in a very clear environment. The improved resolution and accuracy have applications in any area of clinical chemistry in which cells are observed. The reduced likelihood of a false diagnosis also has a significant impact, especially in large-scale screening procedures.

Particle-capture assays

Using membranes for particle-capture tests is a relatively well-known technique. The usefulness of these assays can be enhanced by using dyed or fluorescent latex particles as a label. Such labels can produce a more sensitive or stable assay. Using a TEM for particle capture allows for a more specific capture reaction, and capturing the particles on the membrane surface rather than in the depth of the membrane matrix enhances sensitivity.

Biosensors

TEMs provide accurate flow control of diffusion properties in biosensor applications in which the membrane acts as a barrier to biological cells and controls their flow to the sensor. The membrane also serves as a barrier to many potential contaminants, improving the assay's specificity. In applications involving the presence of biochemical reagents to measure the reaction, the pores can be filled with the desired materials (e.g. antigen or enzymes). The complete biosensor can therefore be dried onto the membrane.

We offer a complete range of track-etched membranes manufactured using proprietary technology to produce a precision membrane filter with a closely controlled pore size distribution.

Please contact your Cytiva representative for more information about our track-etched membranes.

Yeast cells on Black Cyclopore with DAPI Stain

Electron micrograph of Cyclopore membrane with latex beads on surface
Sample collection cards

Whatman 903[™] Proteinsaver cards are non-chemically treated absorbent filter papers for easy, convenient collection and in-vitro storage of blood and other biological fluids. The 903 card can be transported and stored without refrigeration.

903 cards

- Non-chemically treated paper
- DNA not bound to paper
- Used for collection and storage of blood or other biological fluids
- Does not require refrigeration

Ordering information

Whatman 903 Proteinsaver Card

57		NOT	A CI	a.
Nime	There could have T	_		

Whatman 903 Proteinsaver Card

Catalog number	Product name	Dimensions	Pack size	Regional availability	Description
10534612	903 Proteinsaver Card US		100/pk	Global	Provides wrap-around protection for the blood collection area. Custom code for USA.
10531018	903 Proteinsaver CardEU 5-spot		100/pk	Global	Provides wrap-around protection for the blood collection area. Custom code for Europe.
10534320	Proteinsaver Snap-Apart Card		100/pk	Global	4-spot filter paper section attached to paper parts that fully enclose the blood application area and provides IFU. To use, grab both ends of the carrier card and pull against each other to release the application region.
10534795	903 Simple Screening Card		1/pk	EMEA, NA, SA	5-spot card without the wrap-around protection. Also with limited demographic information
10530072	903 Perforated 5-circle Card		100/pk	EMEA, NA	5-spot cards without wrap-around protection. Cards have perforations applied around the circles to allow removal for testing, as opposed to punch extractions.
10530131	903 Perforated 5-circle		50/pk	Global	Same as 10530072 but 50/pack
10530138	Perforated 903 5-spot Card		20/pk	Global	Same as 10530072 but 20/pack
10534737	903 CDC Card		100/pk	EMEA, NA	Card made for US CDC agency testing.
10538018	CF12	58 × 58 cm	100/pk	Global	Card of CF12 filter paper cut in specified measurements.
10535097	CF12	210 × 297 mm	100/pk	Global	A4 sheet of CF12 filter paper cut in specified measurements.
10538017	CF12	46 × 57 cm	100/pk	EMEA, NA, SA	Card of CF12 filter paper cut in specified measurements.
10538019	CF12	8 × 10 in	100/pk	NA, SA	Card of CF12 filter paper cut in specified measurements.

10534612-903 Proteinsaver US

10531018–903 Proteinsaver EU 5-spot

10530072-903 Perforated 5-circles

10538018-CF12 58 x 58 cm

10534320-903 Protein Snap-Apart

TO OPEN	Protein Saver Snap-Apart Protein Saver Snap-Apart Whatman TM For Research Use Only Not for use in diagnostic procedure Merest Farm Industrial Estate Cardift, CF14 777, UK
---------	---

Cytiva Diagnostic Services

Cytiva Diagnostic Services can accelerate your assay development and success, from concept to prototype.

The path from an idea or lab-based test to an approved rapid diagnostic test is challenging. There are technical, financial, and regulatory hurdles in developing a marketable lateral flow assay. Cytiva Diagnostic Services support early stage developers on their path to market by:

- Providing access to state-of-the-art infrastructure.
- Offering the benefit of over 40 years' experience in developing diagnostics.
- Accelerating progress between key development stages.

Development expertise

- Method development
- Method transfer
- Method qualification
- Troubleshooting
- Full outsourcing of development

IP protection and transparency

- Process transparency
- On-site access and participation during all development activities
- Method qualification
- Transfer back to customer of assay IP

Infrastructure and materials

- Reference standard characterization
- Stability studies
- Lot release testing
- Raw material inspection testing

Training and education

- Classroom, on-site, and online education
- Process, equipment and regulatory training
- Workshop format to work through specific issues

08 Appendices

Appendix A: filtration simplified 25 Basic filtration concepts and terms 25 Filter types and filter holders 25 Glossary of terms 26 Appendix B: product selection 26 Trace element composition cellulose and glass microfiber filters 26 Chemical compatibility of membranes and housings 26 Media characteristics selection guide 27 Syringe filter diameter guide. 27 Media selection for sample prep applications 27 Appendix C: alphabetical and numeric indices 27 Index by catalog product number. 27 Alphabetical index 28

Filtration simplified

Basic filtration concepts and terms

Selecting a filter with the appropriate properties can help you achieve accurate results and reach discovery faster. But with so many types of filters to choose from, how can you be sure you're making the right choice? Use this compilation of basic filtration concepts and terms as a handy reference to clarify the various options available to you to speed up your selection process.

Ash content

Determined by ignition of the cellulose filter at 900°C in air. Minimizing ash content is essential in gravimetric applications and also a useful measure of the level of general purity.

Chemical compatibility

It is very important to ensure that the structure of the filter media will not be impaired by exposure to certain chemicals. In addition, exposure to these chemicals should not cause the filter to shed fibers or particles, or add extractables. Length of exposure time, temperature, concentration, and applied pressure can all affect compatibility. Chemical compatibility charts are provided to aid your filter selection.

Depth filters

Depth filters are usually characterized as filters that retain particles on the surface and within the filter matrix. All conventional fibrous filters (whether manufactured from cellulose, borosilicate glass microfiber or other fibrous material) are depth filters and are normally characterized by good loading capacity.

Hydrophilic

Hydrophilic filters possess an affinity for water and can be wetted with virtually any liquid. They are typically used for aqueous solutions and are compatible organic solvents.

Hydrophobic

These filters repel water, and are thus best suited for filtering organic solvents as well as for venting and gas filtration applications.

Membrane filters allow the efficient retention of submicron particulates and organisms.

Glass microfiber filters are manufactured from 100% borosilicate glass.

Liquid flow rate (including Herzberg method)

Under practical filtration conditions, the liquid flow rate will depend on a number of factors, many of which will be specific to the solid and/or liquid being filtered. In order to compare filter performances, a standardized set of conditions is required which will characterize liquid flow rate for a given filter without the complicating secondary effects derived from the presence of particulates.

Liquid flow rate can be quantified by a variety of methods. For example, the Herzberg flow rate test where prefiltered, deaerated water is applied to the test filter (effective area 10 cm²) at a constant hydrostatic head (10 cm) is commonly used. The rate of the flow is measured in seconds per 100 mL.

Flow rate can also be measured by the modified ASTM method which uses a quadrant folded filter held in a wire loop.

Loading capacity

Loading capacity is the ability of a filter to load particulates into the fibrous matrix while maintaining a practical filtration speed and a workable pressure differential across the filter. In general, glass microfiber filters have a high loading capacity when compared with cellulose filters of the same retention rating and thickness. Membranes have inherently low loading capacity.

Particle retention (air/gas)

Retention mechanisms for removing particulates from air or gas enable much higher efficiencies to be realized than those applicable to liquids. Efficiencies for air filtration are normally expressed as percent penetration or retention for a stated airborne particle size. The dioctyl phthalate (DOP) test is commonly used, wherein the filter is tested with an aerosol containing 0.3 µm particles.

Particle retention (liquid)

In a filtration process, the particle retention efficiency of a depth-type filter is often expressed in terms of the particle size (in μ m) at which a set level of the total number of particles initially testing the filter is obtained. It is customary to quote the retention levels at 98% efficiency to allow for secondary filtration effects.

Pore size (membranes)

For Whatman membranes, the pore size, usually stated in micrometers (µm), is based upon bubble point. Pore size ratings are nominal for all membranes apart from those for track-etched and Anopore membranes. For track-etched and Anopore membranes the pore sizes are absolute, as these membranes have true pores (i.e. a top-to-bottom hole through the membrane).

Prefilters

The life of a membrane filter can be extended many times by placing a prefilter upstream of the membrane. The total particulate load challenging the membrane is considerably reduced, thus allowing the membrane to operate efficiently.

Screen or surface filters

Membrane filters are generally described as screen filters because particles are almost entirely trapped on the filter surface. The narrow effective pore size distribution of Whatman membrane filters is one of their major features.

Whatman cellulose filter papers exhibit particle retention levels down to 2.5 $\mu m.$

Multigrade GMF 150 combines two filters in one for fast, effective, multilayered filtration.

Basic filtration concepts and terms

Filter papers

Whatman brand qualitative and quantitative filter papers are, with few exceptions, manufactured from high-quality cotton linters that have been treated to achieve a minimum alpha cellulose content of 98%. These cellulose filter papers are used for general filtration and exhibit particle retention levels down to 2.5 µm. There is a wide choice of retention and flow rate combinations to meet the needs of numerous laboratory applications. The different groups of filter paper types offer increasing degrees of purity, hardness and chemical resistance. Whatman quantitative filter papers have extremely high purity to allow for analytical and gravimetric work.

Glass microfiber filters (GMF)

The properties of borosilicate glass microfibers enable Cytiva to manufacture filters with retention levels extending into the submicron range. These depth filters combine fast flow rate with high loading capacity and retention of very fine particulates. Due to the high void volume exhibited by glass microfiber filters, the loading capacity is considerably higher than for a cellulose filter of similar retention. Glass microfiber filters must be used flat and should not be folded. Whatman glass microfiber filters are manufactured from 100% borosilicate glass and most are completely binder-free. Binder-free glass microfiber filters will withstand temperatures up to 550°C and can therefore be used in gravimetric analysis where ignition is involved.

Membrane filters

Unlike cellulose and glass microfiber depth filters, membrane filters are conventionally classified as surface filters because the filter matrix acts as a screen and retains particulates almost entirely on the smooth membrane surface. The retention levels for these filters extend down to 0.02 µm and allow the efficient retention of sub-micron particulates and organisms. Water microbiology and air pollution monitoring are major applications for membranes.

Standard circle funnel volumes

The maximum practical volume of the most popular circle sizes (quadrant folded) is given in the following chart. Membrane and glass microfiber filters are used flat.

Standard circle funnel volumes:

Diameter (cm)	Volume (mL)
9	15
11	20
12.5	35
15	75
18.5	135
24	300

Types of filter holders

A filter matrix requires a suitable support structure to enable it to be used for the filtration of liquids or gases. One of the simplest forms of holder is the conical glass filter funnel into which a quadrant folded or fluted filter paper is placed (1). Some applications require additional motivating force for the solid particulate and liquid separation to occur (i.e. vacuum assisted filtration). This type of filtration can be carried out in a one-piece Büchner style funnel (2) where the filter is used flat on a perforated base sealed into the funnel. Due to the difficulties encountered in cleaning this type of funnel, the demountable 3-piece funnel was developed (3). The Whatman 3-Piece Filter Funnel can be fully disassembled and enables the filter paper to be securely clamped between the support plate and filter reservoir flange. Membrane holders (4) incorporate either sealed-in sintered glass or removable stainless steel mesh supports for the membrane. Syringe and inline filters are also available. Large diameter membranes are typically used in pressure holders.

Selecting the right filter

The selection of a laboratory filter depends on the conditions and objectives of the experiment or analytical procedure. The three most important characteristics of any laboratory filter are:

- Particle retention efficiency
- Fluid flow rate through the filter
- Loading capacity

In addition, according to the particular application, other important characteristics may require examination. For instance, wet strength, chemical resistance, purity and ash level may assume equal importance under certain circumstances.

The vacuum level placed across a filter will influence the flow rate; however, it is not a linear relationship. For example, for depth filters, it has been found that when the vacuum increases over about 5 cm Hg, no significant increase in flow rate occurs. Generally, the optimum vacuum level is between 2–5 cm Hg. The type of support under the filter can also play a significant role in the level of vacuum that can be applied to a fibrous material.

Standard 58° or 60° funnels

Glass/polyethylene funnel diameter (mm)	Filter paper size (cm)
35	5.5
45	7.0
55	9.0
65	11.0
75	12.5
90	15.0
100	18.5
160	24.0
180	32.0
220	40.0
260	50.0

(2)

Examples of Filter Holders

(1)

Büchner funnel filter selection

Büchner funnel filter s	election		
Diameter (mm)	Perforated area (mm)	Filter paper size (mm)	
43	32	42.5	
63	42	55	
83	60	75	
100	77	90	
114	95	110	
126	105	125	
151	135	150	
186	160	185	
253	213	240	

Typical particle sizes

		μm	
Gelatinous precipitates	Metal hydroxides	25-40	
	Precipitated silica	25-40	
Crystalline precipitates	Ammonium phosphomolybdate	20	
	Calcium oxatate	15	
	Lead sulfate	10	
	Barium sulfate (hot ppt.)	8	
	Barium sulfate (cold ppt.)	3	
Blood cells	Platelets	2-3	
	Erythrocytes (average)	7	
	Polymorphs	8–12	
	Small lymphocytes	7–10	
	Large lymphocytes	12–15	
	Monocytes	16-22	
Bacteria*	Cocci	0.5	
	Bacilli	1.0 × (2.0–6.0)	
	Serratia marcescens	0.5 × (0.5–1.0)	
	Pneumococcus	1.0	
	Bacillus tuberculosis	0.3 × (2.5–3.5)	
	Amoeba	12–30	
	Escherichia Coli	0.5 × (1.0–3.0)	
	Smallest bacteria	0.22	
Other microorganisms, etc.	Yeast cells	2.0-8.0	
	Colloids	0.06-0.30	
	Rye grass pollen	34	
	Ragweed pollen	20	
	Puffball spores	3.3	

* Where bacteria are rod-shaped, range of lengths is given in parentheses

Glossary of terms

A	
Absolute filter rating	This rating refers to the size of particles retained by the filter at 100% efficiency.Particles larger than the specified size rating of the filter medium will not pass through that filter (e.g. particles larger than 0.2 µm will not pass through a filter with an absolute rating of 0.2 µm).
Activated carbon	Porous carbon with a large surface area that can adsorb certain organic chemicals.
Absorption	The amount of material taken up by the structure of the filter medium. Usually expressed as volume or mass per unit area of filter.
Adsorption	Retention of substances by loosely attaching to the surface of the filter.
Aerosol	A dispersion (suspension) of particles or droplets of liquid in air or gas.
Air filter	A filter that removes contamination (particles) from air or a gas. If the filter medium is hydrophobic it will also remove water based liquid from air streams.
Air lock	Liquid flow is prevented by the high pressure required to expel air trapped in the pore structure of a wet membrane.
Air venting filter	A filter that removes air from liquid or allows air to pass in or out of a closed container.
Ambient	The term used to present a generalized description of an environment. Usually room temperature (20-25°C) and standard atmospheric pressure.
Anisotropic membrane	A membrane in which the pore openings are larger on one side than the other. The membrane must be oriented correctly to obtain the best filtration characteristics.
Aseptic conditions	A test or operation performed in a sterile environment designed to prevent the introduction of bacteria.
Ash content	The amount of material remaining after a known mass of filter paper is completely combusted. Expressed as a %.
В	
Back pressure	A pressure downstream (outlet side) of the filter that creates resistance to flow of liquid or gas. This can result from closing a valve or entrapped air in a liquid system. This can also result from gradual blocking of the filter during use or to the resistance to flow caused by the filter itself. The amount of force required to move a sample through a filter increases as back pressure increases.
Bacterial retention	The number of microorganisms that a membrane filter will retain upstream with no passage through the membrane. Usually expressed as a log reduction in the number of organisms (CFU—colony forming units), from a defined starting concentration.
Basis weight	Weight of a sheet, usually expressed as g/m at a predfined level of moisture content or conditions of measurement.
Bubble point	The pressure at which air will pass through a wetted membrane filter. This pressure is correlated to the pore size of the membrane and thus this test can be used to confirm the pore size and integrity of a membrane or filter device.
Burst pressure	The pressure at which a membrane or filter device will rupture.
c	
Cold sterilization	Removal of bacteria by filtration, generally using a 0.2 μm filter to a pre-defined level. General definition is a log 10exp ⁷ reduction in CFU/mL.
D	
Depth filter	A filter that does not have a defined pore size or structure. Particles are entrapped or adsorbed both within and on the filter due to a random matrix or structure that creates a tortuous path through the filter.
Downstream (of the filter)	Any process occurring after the sample has passed through the filter positioned in the system.
Dry burst	The pressure required to burst a dry, unsupported area of filter paper using compressed air.

EFA (effective filtration area) The total area of the filter medium exposed to the flow of liquid or air, that is usable for filtration. This is usually designated in square centimeters (cm2), square inches (in2) or square feet (ft2). EtO sterilization Chemical method of treating a material to render microorganisms non viable. Extractables Chemicals which may leach from a material such as a filter or filter device under certain conditions. Care should be taken to ensure that extractables do not interfere with the analysis. E. Filter medium Permeable material that removes particles from a fluid that is passed through the material. Filtrate The liquid, air, or gas which has passed out of the filter. Filtration The process by which particles are removed from a fluid by passing it through a permeable material. The volume of liquid or gas which flows through a filter or device at a specified pressure in a specified amount of Flow rate time (e.g. 20 mL/min @ 30 psi). G Grammage Weight of a 1 m2 sheet at a predfined level of moisture content or conditions of measurement. Gurley porosity Expression of air flow rate. Expressed as the time taken for a certain volume of air to pass through a specific filter area under a certain pressure. н Hardened Process of treating a cellulose paper to increase its strength. **HEPA** filter A High Efficiency Particulate Air filter that removes particles from an air stream to a defined level of efficiency. Herzberg The time taken to filter a defined volume of water through a filter area of 10 cm2 at a constant, defined head of pressure. Hold-up volume The volume of liquid retained in a filter or housing (can be expressed with or without air purge). Hydrophilic (water loving) Having an affinity for water. A membrane which will wet with aqueous (water) solutions. Hydrophilic membranes are generally chosen for use with aqueous solutions. Hydrophobic (water hating) A membrane which will not readily wet with aqueous (water) solutions. It acts as a barrier to aqueous solutions but allows air to pass freely through it. κ Klemm The time taken for a liquid flow front to travel a defined distance in the lateral plane of a defined width strip of test material while the sample is maintained either horizontally or vertically (e.g. Vertical Klemm of 40 seconds for 7.5 cm). L Loading capacity A characteristic of a filter that indicates the relationship between reduction in flow rate and volume throughput. LRV (log reduction value) A way of expressing the bacterial retention of a filter. A fitting made to connect components of systems together in the medical and scientific industries. These fittings Luer fitting have specific dimensions that allow them to withstand relatively high pressure. М

A measure of length equal to one millionth of a meter.

Е

Micron

N	
Nominal filter retention (efficiency)	The particle size which is retained at a given % efficiency (often expressed at 98%). This is usually how depth filters are specified.
Р	
Particle	A single piece of solid material which is small in relation to its environment. Normally characterized by its size and shape.
Pinched pleat	A pleat that is closed off by excessive pressure or crowding, thus reducing the effective filtration area.
Pleating	The folding process which provides a large surface area within a given volume of filter.
Pore	A hole or cavity.
Pore size (absolute)	The pore size at which a particle of defined size will be retained with an efficiency of 100% under specified conditions.
Pore size (nominal)	The pore size at which a particle of defined size will be retained with an efficiency below 100% (typically 90-98%).
Pore size rating	The diameter of a particle which normally will be retained by the filter. This applies whether the pore size rating is nominal or absolute.
Porosity	A measure of how porous a filter material is. Normally expressed as a percentage, it is the volume of the filter that is composed of pores compared to the total volume.
Prefilter	A filter for removing gross contamination before the substance being filtered passes through the final filter. This is used to extend the life of a small pore size filter.
R	
Radiation sterilized	Rendering microorganisms inactive by subjecting the object to be sterilized to a beam or field of concentrated energy.
Retention	The ability of a filter medium to hold back particles of a given size.
S	
Sterile	Free from living microorganisms to a defined level.
Sterilizing filter	A filter that removes bacteria to a specified level when used according to a specific method.
т	
Tensile strength	A measure of how much a material stretches and then breaks under tension. Test can be performed in different directions across the paper, wet or dry.
Thickness	Thickness of a sheet measured under defined compression force.
Throughput	The amount of fluid that will pass through a filter before the filter blocks or the flow rate is reduced to a point that is unacceptable.
U	
Upstream	Before the filter positioned in the system.

W	
Water absorption	The amount of water absorbed by a sheet per square area.
Water breakthrough pressure	The pressure required to force water through the pores of a hydrophobic membrane.
Water flow rate	The rate of passage of clean (prefiltered) water through a filter of defined area under defined conditions of pressure or vaccum. The flow rate may be expressed as volume/time or as time for a defined volume to pass through the filter.
Wet burst	The pressure required to burst a wet, unsupported area of filter paper (uses water).
Wet strength	An indication of the strength of a sheet of material when wet. Tested by applying water pressure to an unsupported area of filter material.
Wicking rate	The rate of movement of a liquid, usually water, laterally through a sheet of filter material. The rate can be expressed as the time taken for liquid to move a certain distance or the distance moved in a certain time. The orientation of the material must be specified and can be either vertical or horizontal.

Trace element composition cellulose and glass microfiber filters

Cellulose filters: trace element composition

Typical values (µg/g paper)

Grade	1	2	3	4	5	6	40	41	42	43	44	540	541	542
Aluminum	3.6	3.6	3.6	3.6	2.5	-	2.5	2.5	2.5	2.5	2.5	3.4	3.4	3.4
Antimony	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Barium	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Boron	< 1	< 1	< 1	< 1	< 1	-	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Calcium	27.5	27.5	27.5	27.5	8.3	-	8.3	8.3	8.3	8.3	8.3	14.7	14.7	14.7
Chromium	1	1	1	1	1.5	-	1.5	1.5	1.5	1.5	1.5	1.1	1.1	1.1
Copper	0.9	0.9	0.9	0.9	2	-	2	2	2	2	2	8.2	8.2	8.2
Iron	13.7	13.7	13.7	13.7	12	-	12	12	12	12	12	16.3	16.3	16.3
Lead	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Magnesium	21	21	21	21	4	-	4	4	4	4	4	3.3	3.3	3.3
Manganese	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Mercury	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Potassium	6.2	6.2	6.2	6.2	2.3	-	2.3	2.3	2.3	2.3	2.3	3.7	3.7	3.7
Silicon	8.8	8.8	8.8	8.8	6.2	-	6.2	6.2	6.2	6.2	6.2	< 6	< 6	< 6
Sodium	32.3	32.3	32.3	32.3	16.8	-	16.8	16.8	16.8	16.8	16.8	17	17	17
Zinc	58.3	58.3	58.3	58.3	64.5	-	64.5	64.5	64.5	64.5	64.5	87.8	87.8	87.8

Glass microfiber and quartz filters: trace element composition

Typical values (µg/g paper)

	QM-A*	EPM 2000	934-AH	GF/A and GF/C
Arsenic (As)	< 1	< 1	24	5
Beryllium (Be)	< 1	< 1	< 1	< 1
Cobalt (Co)	< 1	1	< 1	< 1
Cadmium (Cd)	< 1	< 1	< 1	< 1
Copper (Cu)	< 1	5	3	< 1
Lead (Pb)	< 1	3	9	5
Manganese (Mn)	2	20	18	6
Mercury (Hg)	< 1	< 1	< 1	< 1
Nickel (Ni)	1	1	3	1
Selenium (Se)	< 3	< 3	< 3	< 3
Silver (Ag)	< 1	< 1	< 1	<1
Thallium (TI)	< 1	< 1	< 1	< 1

Typical composition based on ICP-MS analysis

* Trace element report can be downloaded from the Cytiva website for each lot of QM-A

Chemical compatibility of membranes and housings*

Solvent	ANP	CA	CN	PC	PE	GMF	NYL	PP	DpPP	PES	H-PTFE	PTFE [‡]	PVDF	RC
Acetic acid, 5%	R	LR	R	R	-	R	R	R	R	R	R	R	R	R
Acetic acid, glacial	R	NR	NR	-	-	R	LR	R	R	R	R	R	R	NR
Acetone	R	NR	NR	NR	R	R	R	R	R	NR	R	R	NR	R
Acetonitrile	R	NR	NR	-	-	R	R	R	R	NR	R	R	R	R
Ammonia, 6 N	NR		NR	NR	LR	LR	R	R	R	R	R	R	LR	LR
Amyl acetate	LR	NR	NR	NR	R	R	R	R	R	LR	R	R	LR	R
Amyl alcohol	R	LR	LR	-	-	R	R	R	R	NR	R	R	R	R
Benzene [†]	R	R	R	NR	R	R	LR	NR	NR	R	R	R	R	R
Benzyl alcohol†	R	LR	LR	LR	R	R	LR	R	R	NR	R	R	R	R
Boric acid	R	R	R	R	R	R	LR	R	R	-	-	R	R	R
Butyl alcohol	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Butyl chloride [†]	-	-	-	-	-	R	NR	NR	NR	-	-	R	R	-
Carbon tetrachloride [†]	R	NR	R	LR	R	R	LR	NR	NR	NR	R	R	R	R
Chloroform [†]	R	NR	R	NR	R	R	NR	LR	LR	NR	R	R	R	R
Chlorobenzene [†]	R	-	LR	NR	-	R	NR	LR	-	NR	-	R	R	R
Citric acid	-	-	-	-	-	R	LR	R	-	R	-	R	R	R
Cresol	-	NR	R	-	-	R	NR	NR	NR	NR	-	R	NR	R
Cyclohexane	R	NR	NR	R	R	R	NR	NR	NR	NR	-	R	R	R
Cyclohexanone	R	NR	NR	-	-	R	NR	R	R	NR	R	R	R	R
Diethylacetamide	-	NR	NR	-	-	R	R	R	R	-	-	R	NR	R
Dimethylformamide	LR	NR	NR	-	-	R	R	R	R	NR	R	R	NR	LR
Dioxane	R	NR	NR	NR	R	R	R	R	R	LR	-	R	LR	R
DMSO	LR	NR	NR	NR	R	R	R	R	R	NR	R	R	LR	LR
Ethanol	R	R	NR	R	R	R	R	R	R	R	-	R	R	R
Ethers	R	LR	LR	R	R	R	R	NR	NR	R	R	R	LR	R
Ethyl acetate	R	NR	NR	NR	R	R	R	R	R	NR	R	R	NR	R
Ethylene glycol	R	LR	LR	R	R	R	R	R	R	R	R	R	R	R
Formaldehyde	LR	LR	R	R	R	R	R	LR	LR	R	R	R	R	LR

* ANP = Anopore; CA = Cellulose acetate; CN = Cellulose nitrate; DpPP = Polypropylene depth filter; GMF = Glass microfiber; NYL = Nylon; PC = Polycarbonate; PE = Polyester; PES = Polyethersulfone; PP = Polypropylene; H-PTFE = Hydrophilic Polytetrafluoroethylene; PTFE = Polytetrafluoroethylene; PVDF = Polyvinylidene difluoride; RC = Regenerated cellulose R = Resistant; LR = Limited Resistance; NR = Not Recommended.

[†] Short Term Resistance of Housing.

* Membrane may need pre-wetting with isopropanol/methanol if filtering a polar liquid.

The above data is to be used as a guide only. Testing prior to application is recommended.

Solvent	ANP	CA	CN	PC	PE	GMF	NYL	PP	DpPP	PES	H-PTFE	PTFE [‡]	PVDF	RC
Freon TF	R	R	R	R	R	R	NR	NR	NR	R	-	R	R	-
Formic acid	-	LR	LR	-	-	R	NR	R	R	R	-	R	R	LR
Hexane	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Hydrochloric acid, conc.	NR	NR	NR	NR	NR	R	NR	LR	LR	R	R	R	R	NR
Hydrofluoric acid	-	NR	NR	-	-	NR	NR	LR	LR	-	-	R	R	NR
Isobutyl alcohol	R	LR	LR	R	R	R	R	R	R	-	R	R	R	R
Isopropyl alcohol	R	R	LR	-	-	R	R	R	R	-	R	R	R	R
Methanol	R	R	NR	R	R	R	R	R	R	R	R	R	R	R
Methyl ethyl ketone	R	LR	NR	NR	R	R	R	R	R	NR	R	R	NR	R
Methylene chloride [†]	R	NR	LR	-	-	R	NR	LR	LR	NR	R	R	R	R
Nitric acid, conc.	-	NR	NR	LR	NR	R	NR	NR	NR	NR	R	R	R	NR
Nitric acid, 6 N	-	LR	LR	-	-	R	NR	LR	LR	LR	R	R	R	LR
Nitrobenzene [†]	LR	NR	NR	NR	R	R	LR	R	R	NR	-	R	R	R
Pentane	R	R	R	R	R	R	R	NR	NR	R	-	R	R	R
Perchloroethylene	R	R	R	-	-	R	LR	NR	NR	NR	R	R	R	R
Phenol 0.5%	LR	LR	R	-	-	R	NR	R	R	NR	-	R	R	R
Pyridine	R	NR	NR	NR	R	R	LR	R	R	NR	R	R	NR	R
Sodium hydroxide, 6N	NR	NR	NR	NR	NR	NR	LR	R	R	R	R	R	NR	NR
Sulfuric acid, conc.	NR	NR	NR	NR	NR	R	NR	NR	NR	NR	R	R	NR	NR
Tetrahydrofuran	R	NR	NR	-	-	R	R	LR	LR	NR	R	R	R	R
Toluene [†]	R	LR	R	NR	R	R	LR	LR	LR	NR	R	R	R	R
Trichloroethane [†]	R	NR	LR	NR	R	R	LR	LR	LR	NR	R	R	R	R
Trichloroethylene [†]	R	-	R	-	-	R	NR	LR	LR	NR	R	R	R	R
Water	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Xylene [†]	R	R	R	-	-	R	LR	LR	LR	LR	R	R	R	R

* ANP = Anopore; CA = Cellulose acetate; CN = Cellulose nitrate; DpPP = Polypropylene depth filter; GMF = Glass microfiber; NYL = Nylon; PC = Polycarbonate; PE = Polyester; PES = Polyethersulfone; PP = Polypropylene; H-PTFE = Hydrophilic Polytetrafluoroethylene; PTFE = Polytetrafluoroethylene; PVDF = Polyvinylidene difluoride; RC = Regenerated cellulose R = Resistant; LR = Limited Resistance; NR = Not Recommended.

[†] Short Term Resistance of Housing.

* Membrane may need pre-wetting with isopropanol/methanol if filtering a polar liquid.

The above data is to be used as a guide only. Testing prior to application is recommended.

Using an irregular chemical solvent? Consult our chemical compatibility table, and contact us for a free sample of the membrane most suitable for your application.

Media characteristics selection guide

PTFE = Polytetrafluoroethylene

NYL = Nylon

Filter Media			ANP	CA	CN	NYL	PP	DpPP	PES	PTFE	H-PTFE	PVDF	RC	GMF
Hydrophilic			•	٠	•	•	0	0	•	0	•	•	•	N/A
Slightly Hydrophobi	ic		0	0	0	0	•	٠	0	0	0	0	0	N/A
Hydrophobic			0	0	0	0	0	0	0	•	0	0	0	N/A
Sample type	Aqueou	6	٠	٠	•	•	٠	•	•		٠	•	٠	•
	Organic		٠			•	٠	•	٠		•	•	٠	•
Low protein binding	typically		٠	٠						•	•	•	•	
Clean /low extracta	bles		Low						Low	Low	Low		Low	
Pore size														
0.02 µm	·		•											
0.1 µm			٠							•				
0.2 µm			٠	٠		•	٠		•	•	٠	•	•	
0.45 µm				٠		•	٠	•	•	•	٠	•	•	•
0.7 μm														•
0.8 µm				٠										
1 µm									•	•				•
1.2 µm				٠										•
1.5 µm														
1.6 µm														•
2 µm														
2.7 µm														•
5 µm					•									
ANP = Anopore CA = Cellulose Acetate CN = Cellulose Nitrate		PP = Polypropylene DpPP = Polypropyle PES = Polythersulp	ene depth filter hone		H-PTFE = Hy PVDF = Poly RC = Regene	drophilic polyteti vinylidene difluor rated Cellulose	rafluoroethylen ide	e						

GMF = Glass microfibre

Syringe filter diameter guide

Size	ANP	CA	CN	NYL	PP	DpPP	PES	PTFE	H-PTFE	PVDF	RC	GMF
4 mm Sterile				•						•		
4 mm Non-sterile				•				•		٠		
10 mm Sterile	•											
10 mm Non-sterile	•											
13 mm Sterile							•			•	•	
13 mm Non-sterile		•		•	•	•	•	•	•	•	•	•
25 mm Sterile	•	•		•	•		•	•	•	•	•	•
25 mm Non-sterile	•	•					•			•		•
30 mm Sterile		•	•					•			•	
30 mm Non-sterile		•	•					•				

ANP = Anopore CA = Cellulose Acetate CN = Cellulose Nitrate NYL = Nylon PP = Polypropylene DpPP = Polypropylene depth filter PES = Polythersulphone PTFE = Polytetrafluoroethylene H-PTFE = Hydrophilic polytetrafluoroethylene PVDF = Polyvinylidene difluoride RC = Regenerated Cellulose GMF = Glass microfibre

Media selection for sample prep applications

								Solvents				
						Aqueous						
					Hydro	philic					Hydro	phobic
Application/Membrane Type	CN	СА	PES	GMF	NYL	PVDF	DpPP*	ANP	RC	H-PTFE	PP*	PTFE**
High particulate samples				•							•	
HPLC/uHPLC					•	٠		•	٠	•	•	•
Ion Chromatography (IC)								•				
Aggressive solvents							•	•	٠	•	٠	•
Ag/Bioethanol					•				٠	•		
COD/TOC/DOC		•	•									
Trace metals analysis (ICP/AAS/ICP-MS)	•	•	•							•		
Colloidal material								•				
Nanoparticle filtration								•				
Protein analysis		•	٠			٠			٠	•		
Biological sample prep	•	•	•	•		٠			٠	•	٠	
Tissue culture medium/serum		•		•							٠	
Mycoplasma/Viral removal								•				
Aspiration/vacuum protection**												•
Equipment protection (particulate, aerosols)**											•	•
Venting; air, flasks, bioreactors												•
 Mildly Hydrophobic can be used for aqueous sample but Select PTFE for applications where prevention of water 	ıt exhibits elevat intrusion is critic	ed water breakt cal	hrough	CN = Cellulose Nit CA = Cellulose Ace	rate etate	N F	IYL = Nylon VDF = Polyvinylio	dene difluoride		RC = Regenera H-PTFE = Hydro	ted Cellulose ophilic polytetr	afluoroethylene

PES = Polythersulphone

GMF = Glass microfibre

DpPP = Polypropylene depth filter

ANP = Anopore

PP = Polypropylene

PTFE = Polytetrafluoroethylene

Numerical index

Catalog number	Page										
1001-020	16	1002-110	17	1004-320	17	1093-126*	28	1204-320	39	1441-150	22
1001-025	16	1002-125	17	1004-400	17	1093-930	29	1205-110	39	1441-185	22
1001-030	16	1002-147	17	1004-492	19	1093-935	29	1205-185	39	1441-240	22
1001-032	17	1002-147	218	1004-648	19	1093-6215	28	1213-125	39	1441-320	22
1001-042	17	1002-150	17	1004-917	19	1113-090	28	1213-150	39	1441-866	22
1001-045	17	1002-185	17	1004-930	19	1113-110	28	1213-185	39	1441-917	22
1001-047	17	1002-240	17	1005-042	17	1113-125	28	1213-240	39	1441-6309	22
1001-055	17	1002-270	17	1005-047	17	1113-150	28	1213-270	39	1442-042	22
1001-070	17	1002-320	17	1005-055	17	1113-185	28	1213-320	39	1442-047	22
1001-082	17	1002-385	17	1005-060	17	1113-240	29	1213-500	39	1442-055	22
1001-085	17	1002-500	17	1005-070	17	1113-320	29	1214-125	39	1442-070	22
1001-090	17	1002-917	18	1005-090	17	1113-500	29	1214-150	39	1442-090	22
1001-110	17	1002-929	18	1005-110	17	1113-917	29	1214-185	39	1442-110	22
1001-125	17	1002-931	18	1005-125	17	1114-090	28	1214-240	39	1442-125	22
1001-150	17	1002-10048	17	1005-150	17	1114-125	28	1214-320	39	1442-150	22
1001-0155	16	1003-055	17	1005-185	17	1114-150	28	1440-012	22	1442-185	22
1001-185	17	1003-070	17	1005-240	17	1114-185	28	1440-032	22	1442-240	22
1001-240	17	1003-090	17	1005-320	17	1114-240	29	1440-042	22	1442-320	22
1001-270	17	1003-110	17	1005-325	16	1114-400	29	1440-047	22	1442-917	22
1001-320	17	1003-125	17	1006-042	17	1114-930	29	1440-055	22	1442-971	22
1001-325	16	1003-150	17	1006-070	17	1201-125	39	1440-070	22	1442-6551	22
1001-329	16	1003-185	17	1006-090	17	1201-150	39	1440-090	22	1442-10055	22
1001-385	17	1003-240	17	1006-110	17	1201-185	39	1440-110	22	1443-090	22
1001-400	17	1003-320	17	1006-125	17	1201-240	39	1440-125	22	1443-110	22
1001-500	17	1003-323	16	1006-150	17	1201-270	39	1440-150	22	1443-125	22
1001-813	18	1003-917	18	1006-185	17	1201-320	39	1440-185	22	1443-150	22
1001-824	18	1004-027	16	1006-240	17	1202-125	39	1440-240	22	1443-185	22
1001-917	18	1004-041	17	1091-110	28	1202-150	39	1440-320	22	1444-070	22
1001-918	18	1004-042	17	1091-125	28	1202-185	39	1440-329	22	1444-090	22
1001-929	18	1004-047	17	1091-150	28	1202-240	39	1440-917	22	1444-110	22
1001-931	18	1004-050	17	1091-165	28	1202-270	39	1440-6168	22	1444-125	22
1001-932	18	1004-055	17	1091-185	28	1202-320	39	1441-042	22	1444-150	22
1001-6508	16	1004-070	17	1091-190	28	1202-385	39	1441-047	22	1444-185	22
1001-10035	17	1004-090	17	1091-240	29	1202-400	39	1441-050	22	1444-240	22
1001-10048	17	1004-110	17	1091-330	29	1202-500	39	1441-055	22	1450-042	24
1002-042	17	1004-125	17	1091-930	29	1204-125	39	1441-060	22	1450-055	24
1002-047	17	1004-150	17	1091-935	29	1204-150	39	1441-070	22	1450-063	24
1002-055	17	1004-185	17	1093-110	28	1204-0185	39	1441-090	22	1450-070	24
1002-070	17	1004-240	17	1093-111	28	1204-240	39	1441-110	22	1450-090	24
1002-090	17	1004-270	17	1093-125	28	1204-270	39	1441-125	22	1450-110	24

Catalog number	Page										
1450-125	24	1541-055	26	1820-125	51	1822-150	51	1825-1421	51	1851-082	59
1450-150	24	1541-070	26	1820-150	51	1822-185	51	1825-1501	51	1851-085	59
1450-185	24	1541-090	26	1820-240	51	1822-320	51	1827-021	51	1851-090	59
1450-240	24	1541-110	26	1820-0614	51	1822-849	52	1827-024	51	1851-101	59
1450-320	24	1541-125	26	1820-866	52	1822-866	52	1827-025	51	1851-110	59
1450-500	24	1541-150	26	1820-915	52	1822-915	52	1827-028	51	1851-118	59
1450-916	24	1541-185	26	1820-6537	51	1822-6580	51	1827-030	51	1851-150	59
1450-917	24	1541-240	26	1820-8013	51	1822-99162	51	1827-032	51	1851-865	59
1450-993	24	1541-270	26	1820-10026	52	1823-007	51	1827-035	51	1851-8866	59
1452-090	24	1541-320	26	1820-100264	51	1823-010	51	1827-037	51	1852-040	59
1452-110	24	1541-400	26	1821-021	51	1823-021	51	1827-042	51	1852-042	59
1452-125	24	1541-917	26	1821-024	51	1823-024	51	1827-047	51	1853-037-50	59
1452-150	24	1542-055	26	1821-025	51	1823-025	51	1827-055	51	1853-047-50	59
1452-240	24	1542-070	26	1821-037	51	1823-035	51	1827-070	51	1853-050-50	59
1454-055	24	1542-090	26	1821-042	51	1823-042	51	1827-082	51	1853-090-50	59
1454-070	24	1542-110	26	1821-047	51	1823-047	51	1827-085	51	1853-150-50	59
1454-090	24	1542-125	26	1821-055	51	1823-055	51	1827-090	51	1855-037	59
1454-110	24	1542-150	26	1821-060	51	1823-070	51	1827-105	51	1855-047	59
1454-125	24	1542-185	26	1821-070	51	1823-090*	51	1827-110	51	1855-082	59
1454-150	24	1542-240	26	1821-090*	51	1823-257	51	1827-125	51	1855-090	59
1454-185	24	1542-400	26	1821-110*	51	1823-915	52	1827-150	51	1855-110	59
1454-240	24	1703-050	218	1821-125*	51	1823-1101	51	1827-185	51	1855-150	59
1454-320	24	1810-047	54	1821-150*	51	1823-1251	51	1827-240	51	1855-865	59
1454-500	24	1810-090	54	1821-185*	51	1823-1421	51	1827-320	51	1855-866	59
1454-917	24	1810-110	54	1821-271	52	1823-1501	51	1827-808	52	1872-047	45
1540-042	26	1810-125	54	1821-914	52	1825-015	51	1827-866	52	1872-050	45
1540-055	26	1810-142	54	1821-915	52	1825-021	51	1827-889	52	1872-055	45
1540-090	26	1810-150	54	1822-021	51	1825-024	51	1827-957	52	1872-060	45
1540-110	26	1820-021	51	1822-024	51	1825-025	51	1830-640	57	1872-060	47
1540-125	26	1820-024	51	1822-025	51	1825-037	51	1830-6236	57	1882-047	51
1540-150	26	1820-025	51	1822-037	51	1825-042	51	1841-047	53	1882-866	52
1540-185	26	1820-037	51	1822-042	51	1825-047	51	1841-090	53	1950-002	99
1540-240	26	1820-042	51	1822-047	51	1825-055	51	1842-047	53	1950-004	99
1540-320	26	1820-047	51	1822-050	51	1825-070	51	1842-090	53	1950-007	99
1540-321	26	1820-050	51	1822-055	51	1825-090*	51	1851-025	59	1950-009	99
1540-324	26	1820-055	51	1822-070	51	1825-257	51	1851-032	59	1950-012	99
1540-10123	42	1820-060	51	1822-090	51	1825-293	51	1851-037	59	1950-017	99
1540-10124	42	1820-070	51	1822-100	51	1825-915	52	1851-047	59	1950-027	99
1541-042	26	1820-090	51	1822-110	51	1825-1101	51	1851-050	59	1960-002	101
1541-047	26	1820-110	51	1822-125	51	1825-1251	51	1851-055	59	1960-004	101

Catalog number	Page	Catalog number	Page	Catalog number	Page	Catalog number	Page	Catalog number	Page	Catalog number	Page
1960-009	101	2300-10062	216	2629-990	221	2800-432	210	3001-653	208	5401-090E	224
1960-032	101	2300-10063	216	2630-990	221	2800-608	210	3001-672	208	5802-125	40
1960-052	101	2300-10064	216	2631-990	221	2800T	186	3001-681	208	5802-150	40
1960-054	101	2300-10065	216	2642	184	2801	186	3001-845	208	5802-185	40
1961-054	101, 102	2300-10072	216	2700T	186	2802T	186	3001-861	208	5802-240	40
1980-001	108	2300-10073	216	2702M	186	2803T	186	3001-878	208	5802-320	40
1980-002	108	2300-10074	216	2702T	186	2804T	186	3001-917	208	5802-385	40
2001-0100	152	2300-10092	216	2703T	186	2809T	192	3001-918	208	5802-6698	40
2001-0200	152	2300-10093	216	2706T	179	2810	181	3001-931	208	5925-090	54
2002-5100	152	2300-10094	216	2707NS	179	2810-166	210	3001-964	208	5925-142	54
2002-5200	152	2301-916	215	2709T	192	2810-228	210	3002-911	208	6700-3602	186
2017-006	222	2301-6150	215	2710	181	2810-258	210	3002-917	208	6700-3610	186
2017-009	222	2301-6160	215	2711T	181	2810-266	210	3003-917	208	6700-7501	186
2017-013	222	2600-100A	221	2712M	181	2810-338	210	3004-614	208	6700-7502	186
2103	190	2600-101A	221	2712T	181	2810-339	210	3004-917	208	6700-7504	186
2105-841	224	2600-102A	221	2713	181	2810-432	210	3017-621	208	6701-7510	186
2105-862	224	2600-103A	221	2713T	181	2810-902	210	3017-820	208	6702-3600	192
2105-918	224	2600-104A	221	2714	181	2810T	181	3017-915	208	6702-7500	192
2107	190	2600-500	221	2714T	181	2811-308	213	3017-917	208	6702-9500	192
2108	190	2601	186	2800-105	210	2812-259	213	3017-8793	208	6703-3610	181
2181-090	47	2601T	186	2800-185	210	2812-287	213	3020-917	208	6703-3611	181
2200-070	223	2602S	186	2800-199	210	2812T	181	3031-681	208	6703-3621	181
2200-090	223	2603	186	2800-226	210	2813	181	3031-901	208	6703-3650	181
2200-110	223	2603T	186	2800-228	210	2813T	181	3031-915	208	6703-7510	181
2200-125	223	2606T	179	2800-250	210	2814-199	213	3454-651	208	6703-7511	181
2200-150	223	2608NS	179	2800-258	210	2814-259	213	3668-915	208	6703-7521	181
2200-185	223	2609T	192	2800-259	210	2814-300	213	3668-6871	208	6703-7550	181
2200-240	223	2610T	181	2800-260	210	2814-432	213	3822-047	62	6704-1500	188
2200-270	223	2611	181	2800-266	210	2814-533	213	3822-070	62	6704-7500	188
2227	175	2611-628	221	2800-280	210	2814T	181	3822-090	62	6704-9502	184
2228	175	2611T	181	2800-282	210	2820	182	3827-035	62	6705-36f04	179
2300-004	215	2612-990	221	2800-288	210	2822-047	62	3827-042	62	6705-3600	182
2300-594	215	2612T	181	2800-300	210	2822-070	62	3827-047	62	6705-3602	179
2300-599	215	2613-991	221	2800-308	210	2822-090	62	3827-070	62	6705-7500	182
2300-731	215	2613T	181	2800-330	210	2827-047	62	3827-090	62	6706-3602	179
2300-772	215	2614-991	221	2800-331	210	3001-604	208	4827-035	62	6708-3602	179
2300-916	215	2614T	181	2800-338	210	3001-614	208	4827-042	62	6709-3602	179
2300-917	215	2626-990	221	2800-339	210	3001-640	208	4827-047	62	6710-3602	186
2300-10060	216	2627-990	221	2800-373	210	3001-651	208	4827-070	62	6710-7502	186
2300-10061	216	2628-990	221	2800-412	210	3001-652	208	4827-090	62	6711-3601	186

Catalog number	Page										
6711-3602	186	6724-5145	173	6768-1304	132	6783-2510	134	6792-0404	131	6809-5002	77
6711-3604	186	6724-6004	187	6771-1304	132	6783-2520	134	6792-1302	132	6809-5012	77
6711-7502	186	6725-5002	171	6772-1302	132	6784-0402	131	6792-1304	132	6809-5022	77
6713-0425	190	6725-5002A	171	6772-1304	132	6784-0404	131	6792-2510	134	6809-5502	77
6713-1075	190	6726-5002	171	6772-2502	134	6784-1301	132	6794-2502	134	6809-5522	77
6713-1650	190	6726-5002A	171	6772-2504	134	6784-1302	132	6794-2504	134	6809-6002	77
6713-1651	190	6728-5050	175	6773-1302	132	6784-1304	132	6794-2510	134	6809-6012	77
6713-5036	190	6728-5100	175	6773-1304	132	6784-1310	132	6794-2512	134	6809-6022	77
6714-3601	184	6746-2502	134	6773-2502	134	6784-1350	132	6794-2514	134	6809-7003	77
6714-3602	184	6746-2504	134	6773-2504	134	6784-2501	134	6798-2501	134	6809-7013	77
6714-3604	184	6747-2502	134	6774-1302	132	6784-2502	134	6798-2502	134	6809-7023	77
6714-6004	187	6747-2504	134	6774-1304	132	6784-2504	134	6798-2504	134	6809-9232	152
6714-7501	184	6749-2504	134	6774-2502	134	6784-2510	134	6798-2510	134	6809-9233	152
6714-7502	184	6750-2502	134	6774-2504	134	6785-1302	132	6806-1316	132	6809-9234	152
6715-3601	184	6750-2504	134	6775-1302	132	6785-1304	132	6809-1002	138	6809-9235	152
6715-3602	184	6750-2510	134	6775-1304	132	6785-2502	134	6809-1012	138	6809-9244	152
6715-3604	184	6751-2502	134	6777-0402	131	6785-2504	134	6809-1022	138	6818-1304	152
6715-3682	184	6751-2504	134	6777-0404	131	6786-0402	131	6809-1102	138	6820-1316	132
6715-7502	184	6751-2510	134	6777-1302	132	6786-2502	134	6809-1112	138	6821-1310	132
6715-7582	184	6752-2504	134	6777-1304	132	6786-2504	134	6809-1122	138	6822-1312	132
6716-3602	184	6753-2502	134	6778-1302	133	6787-2520	134	6809-2002	138	6823-1327	132
6717-7504	184	6753-2504	134	6779-0402	131	6788-1302	132	6809-2012	138	6825-1307	132
6717-7510	184	6753-2510	134	6779-0404	131	6788-1304	132	6809-2022	138	6825-2517	134
6717-9501	184	6756-1302	132	6779-1302	132	6788-2502	134	6809-2024	138	6825-2527	134
6717-9502	184	6756-1304	132	6779-1304	132	6788-2504	134	6809-2102	138	6827-1315	132
6717-9504	184	6756-2502	134	6780-1302	133	6789-0402	131	6809-2112	138	6869-2502	141
6718-9502	184	6756-2504	134	6780-1304	133	6789-0404	131	6809-2122	138	6869-2504	141
6718-9582	184	6757-1302	132	6780-2502	134	6789-1301	132	6809-3002	146	6870-1302	141
6720-5001	174	6757-1304	132	6780-2504	134	6789-1302	132	6809-3012	146	6870-1304	141
6720-5002	174	6757-2502	134	6780-2510	134	6789-1304	132	6809-3022	146	6870-2502	141
6720-5045	174	6757-2504	134	6781-1304	132	6790-0402	131	6809-3102	146	6870-2504	141
6721-5010	174	6758-1302	132	6781-2502	134	6790-0404	131	6809-3112	146	6870-2550	142
6722-1001	195	6758-1304	132	6781-2504	134	6790-1302	132	6809-3122	146	6871-1302	141
6722-1002	195	6758-2502	134	6781-2510	134	6790-1304	132	6809-4002	146	6871-1304	141
6722-5000	195	6758-2504	134	6782-1302	132	6790-2502	134	6809-4012	146	6871-2502	141
6722-5001	195	6765-1302	132	6782-1304	132	6790-2504	134	6809-4022	146	6871-2504	142
6723-5000	192	6765-1304	132	6783-0402	131	6791-0402	131	6809-4024	146	6871-2550	142
6724-5000	177	6766-1302	132	6783-0404	131	6791-1302	133	6809-4102	146	6872-1302	141
6724-5002	173	6766-1304	132	6783-1302	132	6791-1304	133	6809-4112	146	6872-1304	141
6724-5045	173	6768-1302	132	6783-1304	132	6792-0402	131	6809-4122	146	6872-2502	142

Catalog number	Page	Catalog number	Page	Catalog number	Page						
6872-2504	142	6891-2507	142	7181-002	83	7590-002	90	9907-090	62	9925-3002	169
6873-1304	141	6892-2515	142	7181-004	83	7590-004	90	9907-9436	62	9925-3004	169
6873-2502	142	6894-1304	141	7182-001	83	7592-104	92	9909-1302	168	9926-3002	169
6873-2504	142	6894-2504	142	7182-002	83	7707-3000	149	9909-1304	168	9926-3004	169
6874-1302	141	6895-2504	142	7182-004	84	7707-3100	149	9909-2502	168	9927-047	62
6874-1304	141	6896-2502	142	7182-009	84	7707-3200	149	9909-2504	168	9927-070	62
6874-2502	142	6896-2504	142	7182-014	84	7707-3300	149	9910-1302	168	9927-090	62
6874-2504	142	6900-2502	142	7184-001	83	7707-3400	149	9910-1304	168	9927-3002	169
6875-1302	141	6900-2504	142	7184-002	83	7707-3500	149	9910-2502	168	9927-3004	169
6875-1304	141	6901-2502	142	7184-004	84	7707-3600	149	9910-2504	168	9928-3002	169
6875-2502	142	6901-2504	142	7184-005	84	7707-3700	149	9911-1302	168	9928-3004	169
6875-2504	142	6902-2504	142	7184-009	84	7707-3800	149	9911-1304	168	9929-3002	169
6876-1302	141	6905-2502	142	7184-014	84	7707-3900	149	9911-2502	168	9929-3004	169
6876-1304	141	6905-2504	142	7186-004	84	8111-2250	231, 250	9911-2504	168	9930-3002	169
6876-2502	142	6970-2504	144	7188-002	83	8112-2250	250	9912-1302	168	9930-3004	169
6876-2504	142	6971-2504	144	7188-003	83	8113-2250	231	9912-1304	168	9931-3002	169
6878-1302	141	6972-2504	144	7188-004	84	8113-2250	246, 250	9912-2502	168	9931-3004	169
6878-1304	141	6973-2504	144	7188-009	84	8114-2250	231	9912-2504	168	9932-3002	169
6878-2502	142	6974-2504	144	7190-002	83	8114-2250	246	9913-2502	168	9932-3004	169
6878-2504	142	6978-2504	144	7190-004	84	8114-2250	249	9913-2504	168	110401	71
6879-2504	142	6992-2504	144	7191-005	84	8114-2250	250	9914-2502	168	110401	72
6880-1302	141	6993-2504	144	7191-014	84	8115-2250	246, 249	9914-2504	168	110405	71
6880-1304	141	6994-2504	144	7193-002	83	8116-2250	249, 250	9915-2502	168	110405	72
6880-2502	141	6995-2504	144	7193-004	84	8117-2250	246, 249,	9915-2504	168	110604	72
6880-2504	141	7060-2501	69	7195-002	83		250	9916-1302	168	110605	72
6881-2504	141	7060-2511	69	7195-004	84	8121-1750	231,233	9916-1304	168	110656	75
6882-1316	141	7060-2513	69	7195-009	84	8122-2250	231, 233	9917-2504	168	110657	75
6882-2504	141	7060-2514	69	7402-001	93	8124-1750	231, 233	9918-2504	168	110659	75
6882-2516	142	7060-4701	69	7402-002	93	8131-2250	235	9920-1302	168	111101	72
6883-2504	141	7060-4710	69	7402-004	93	8132-2250	235	9920-1304	168	111103	72
6883-2516	142	7060-4712	69	7402-009	93	8133-2250	231, 235	9920-2502	168	111104	72
6884-1310	141	7060-4713	69	7404-001	93	8134-2250	231, 235	9920-2504	168	111105	73
6884-2510	142	7060-4714	69	7404-002	93	8145-2250	233	9921-1302	168	111156	75
6886-1312	141	7062-2513	69	7404-004	93	8151-9915	233, 235	9921-1304	168	111503	73
6886-2512	142	7063-2502	74	7404-009	93	9891-128	42	9921-2502	168	111703	73
6888-1327	141	7063-2504	74	7408-004	93	9892-128	42	9921-2504	168	111705	73
6888-2502	141	7063-4702	74	7410-004	93	9907-042	62	9923-3002	169	112104	73
6888-2527	142	7091-4710	69	7582-002	90	9907-047	62	9923-3004	169	112105	73
6890-1307	141	7141-025	88	7582-004	90	9907-055	62	9924-3002	169	113502	73
6890-2507	142	7141-047	88	7585-004	90	9907-070	62	9924-3004	169	150446	70, 72

Catalog number	Page	Catalog number	Page	Catalog number	Page	Catalog number	Page	Catalog number	Page	Catalog number	Page
155845	70	10300263	22	10311841	39	10313947	40, 45	10334348	41	10347509	32
230300	115	10301645	45	10311842	39	10313951	40, 45	10334351	40	10347510	32
230500	115	10301647	45	10311843	39	10313953	40	10334352	40	10347511	32
230600	115	10310244	39	10311844	39	10313953	45	10334353	40	10347512	32
230800	115	10310244	45	10311845	39	10314712	28	10334365	31	10347513	32
231100	115	10310245	39, 45	10311847	39	10314714	28	10334383	31	10347519	32
231200	115	10310247	39, 45	10311851	39	10314720	29	10334385	31	10347521	32
232300	115	10310643	45	10311852	39	10314726	29	10334435	40	10347522	32
232310	115	10310645	45	10311853	39	10314744	40	10334500	40	10347523	32
420100	111	10310647	45	10311854	39	10314745	40	10334547	40	10347525	32
420200	111	10311387	19	10311856	39	10314747	40	10334551	40	10347530	32
420400	111	10311447	39	10311862	18	10314751	40	10334553	40	10347577	32
800307	72	10311451	39	10311887	19	10314752	40	10334885	31	10347670	217
800308	72	10311547	39	10312000	19	10314753	40	10334987	31	10347671	217
800309	72	10311610	18	10312070	19	10314765	29	10340810	45	10347672	217
1044871	117	10311611	18	10312209	18, 47	10314766	29	10342500	47	10347673	217
10300009	22	10311612	18	10312244	39	10314769	29	10342555	47	10347890	217
10300010	22	10311641	39	10312247	39	10314828	29	10342570	47	10347893	217
10300011	22	10311642	39	10312251	39	10314843	40	10342579	47	10348903	45
10300012	22	10311643	39	10312256	39	10314844	40	10342580	47	10350106	211
10300014	22	10311644	39	10312287	19	10314871	29	10342581	47	10350108	211
10300045	40	10311645	39	10312500	19	10314914	28	10342582	47	10350211	211
10300102	22	10311647	39	10312544	40	10314915	28	10342583	47	10350215	211
10300103	22	10311649	39	10312545	40	10314916	29	10342594	47	10350217	211
10300106	22	10311651	39	10312609	18	10316114	18	10342595	47	10350219	211
10300107	22	10311652	39	10312611	18	10316619	45	10342596	47	10350220	211
10300108	22	10311653	39	10312612	18	10318493	222	10342810	32	10350223	211
10300109	22	10311654	39	10312614	18	10328170	222	10343630	32	10350225	211
10300110	22	10311656	39	10312620	18	10331451	39	10343687	31	10350226	211
10300111	22	10311687	19	10312642	39	10331456	39	10343876	31	10350227	211
10300112	22	10311804	18	10312644	39	10331487	31	10343976	31	10350234	211
10300114	22	10311807	18	10312645	39	10331551	39	10344672	47	10350236	211
10300120	22	10311808	18, 47	10312647	39	10331553	39	10344676	47	10350238	211
10300143	40	10311809	18, 47	10312651	39	10331554	39	10345572	47	10350240	211
10300145	40	10311810	18	10312744	40	10331556	39	10345573	47	10350241	211
10300210	22	10311811	18	10312747	40	10331558	39	10345576	47	10350242	211
10300211	22	10311812	18	10312751	40	10331687	31	10347004	45	10350243	211
10300212	22	10311814	18	10312753	40	10334345	40	10347008	45	10350245	211
10300213	22	10311820	18	10313032	217	10334346	40	10347009	45	10350247	211
10300214	22	10311822	18	10313209	45	10334347	40	10347033	45	10350250	211

Catalog number	Page	Catalog number	Page	Catalog number	Page						
10350252	211	10370319	57	10400706	88	10401706	87	10406872	198	10409970	88
10350255	211	10370320	57	10400712	88	10401712	87	10406970	88	10409970	199
10350261	211	10370391	57	10400714	88	10401714	87	10406970	199	10410012	79
10350265	211	10370393	57	10400772	88	10401721	87	10406972	88, 199	10410014	79
10350273	211	10370434	57	10400806	87	10401726	87	10407112	199	10410206	79
10350274	211	10371005	213	10400812	87	10401731	87	10407114	199	10410212	79
10350275	211	10371007	213	10400814	87	10401770	87	10407132	199	10410214	79
10350287	211	10371011	213	10400821	87	10401772	87	10407134	199	10410219	79
10350306	211	10371019	213	10400906	87	10402012	84	10407170	199	10410224	79
10350324	211	10371025	213	10400909	87	10402014	84	10407172	199	10410229	79
10350416	211	10371036	213	10400912	87	10403012	80	10407312	198	10410312	79
10350437	211	10371042	213	10400914	87	10403112	80	10407314	198	10410314	79
10360005	221	10371043	213	10400921	87	10404001	80	10407324	198	10410319	79
10362000	221	10371045	213	10401106	83	10404006	80	10407332	198	10410380	79
10362010	221	10371055	213	10401112	84	10404012	80	10407334	198	10411108	90
10362030	221	10371075	213	10401114	84	10404014	80	10407342	199	10411111	90
10370002	57	10371103	213	10401118	84	10404026	80	10407370	198	10411113	90
10370003	57	10371114	213	10401121	84	10404031	80	10407372	198	10411116	90
10370004	57	10380004	41	10401122	84	10404044	80	10407615	199	10411130	90
10370005	57	10380005	41	10401126	84	10404106	80	10407713	199	10411205	90
10370006	57	10380006	41	10401131	84	10404112	80	10407714	199	10411211	90
10370007	57	10380204	41	10401170	84	10404114	80	10407734	199	10411213	90
10370008	57	10380205	41	10401180	249	10404126	80	10407970	88, 199	10411305	90
10370010	57	10380206	41	10401312	84	10404131	80	10408472	88, 199	10411311	90
10370011	57	10380404	41	10401314	84	10404139	80	10408712	88, 198,	10411313	90
10370012	57	10380405	41	10401320	84	10404170	80		199	10411405	90
10370018	57	10380406	41	10401380	249	10404180	80	10408714	88, 198,	10411411	90
10370019	57	10382461	208	10401506	87	10405079	84		199	10411413	90
10370020	57	10382514	208	10401512	87	10405672	88, 199	10408915	199	10414006	94
10370050	57	10382562	208	10401514	87	10406512	88	10408970	88, 199	10414012	94
10370105	57	10382581	208	10401606	87	10406572	88, 199	10409414	88	10414106	94
10370111	57	10390046	45	10401612	87	10406800	88	10409470	198	10414112	94
10370119	57	10400012	84	10401614	87	10406801	88	10409472	198	10414114	94
10370172	57	10400014	84	10401618	87	10406802	88	10409714	88	10417001	71, 72
10370202	57	10400106	83	10401621	87	10406803	88	10409770	88, 199	10417004	72
10370205	57	10400112	84	10401626	87	10406812	88	10409771	88	10417006	72
10370206	57	10400114	84	10401631	87	10406814	88	10409771	199	10417012	73
10370302	57	10400206	83	10401664	87	10406870	198	10409772	88, 199	10417014	73
10370305	57	10400212	84	10401670	87	10406871	88, 198,	10409814	88	10417018	73
10370308	57	10400214	84	10401672	87		199	10409834	199	10417031	73

Catalog number	Page	Catalog number	Page	Catalog number	Page	Catalog number	Page	Catalog number	Page	Catalog number	Page
10417050	73	10418552	69	10442006	102	10453001	113	10463053	153	10470301	120
10417101	71	10418606	72	10442100	101	10453007	109, 113	10463062	153	10471101	113
10417104	72	10418612	73	10442101	102	10460100	108	10463100	153	10471700	103, 105,
10417106	72	10418701	71	10442200	101	10461000	109	10463102	153		107, 120
10417112	73	10418704	72	10442212	102	10461118	109	10463103	154	10477600	103, 105,
10417114	73	10418706	72	10442213	102	10461200	109	10463110	153	40477004	117, 120
10417118	73	10418712	73	10442300	101	10461300	109	10463112	153	10477601	120
10417206	72	10418718	73	10443001	102	10461400	109	10463113	154	10477602	117, 120
10417212	73	10418731	73	10443002	102	10462000	135	10463400	176	10498761	107
10417301	71	10418739	73	10443003	102	10462100	135	10463401	176	10498762	107
10417304	72	10418806	70, 72	10443004	102	10462200	135	10463500	135	10530072	253
10417306	72	10418812	73	10443005	102	10462240	135	10463503	135	10530131	253
10417309	72	10418818	73	10443100	101	10462241	135	10463505	135	10530138	253
10417312	73	10421019	57	10443101	102	10462243	135	10463513	135	10531018	253
10417401	70, 72	10421026	57	10443102	102	10462260	135	10463515	135	10534320	253
10417406	70 72	10421030	57	10444830	107	10462261	135	10463523	135	10534612	253
10417414	73	10421043	57	10444835	107	10462263	135	10463525	135	10534737	253
10417451	73	10421057	57	10444850	107	10462500	135	10463533	135	10534795	253
10417501	70, 72	10421060	57	10445830	107	10462510	135	10463535	135	10535097	253
10417506	70, 72	10440000	105, 107	10445835	107	10462520	135	10463543	145	10537138	31
10417512	73	10440003	105, 107	10445850	107	10462600	135	10463545	145	10537200	235
10417606	69	10440004	102, 105,	10445861	117	10462601	135	10463607	174	10538017	253
10417612	69		107	10445863	117	10462610	135	10463608	174	10538018	253
10417701	69	10440006	105, 107	10445866	117	10462650	150	10463609	174	10538019	253
10417706	69	10440020	105	10445868	117	10462655	150	10463703	132	10538877	31
10417712	69	10440102	105, 107	10445890	117	10462656	150	10463713	132	10539028	222
10418101	70	10441000	101	10445894	117	10462700	135	10463800	148	10539167	222
10418301	70, 72	10441001	102	10445895	117	10462701	135	10463801	148	10539995	231
10418306	70, 72	10441002	102	10445897	117	10462710	135	10463802	148	10547001	244
10418312	73	10441003	102	10446004	102	10462940	133	10463803	148	10547002	244
10418318	73	10441004	102	10450003	113	10462945	133	10463804	148	10547003	244
10418401	72	10441005	102	10450004	113	10462950	135	10463805	148	10547004	244
10418406	72	10441200	101	10450009	109, 113	10462960	135	10463806	148	10547005	244
10418412	73	10441201	102	10450450	113	10463030	153	10463808	148	10547006	244
10418450	69	10441203	102	10451414	113	10463032	153	10463809	148	10547020	244
10418501	72	10442000	101	10451610	113	10463033	154	10463814	148	10547021	244
10418506	72	10442001	102	10452003	113	10463040	153	10463815	148	10547023	244
10418512	73	10442002	102	10452004	113	10463042	153	10463898	148	10547116	244
10418514	73	10442003	102	10452005	113	10463043	154	10464100	108	10547117	244
10418550	69	10442004	102	10452006	113	10463052	153	10464103	107, 109	10547118	244

Catalog number	Page										
10547119	244	98949613	18	AV125UAQU	165	GS203NPUGMF	161	UN203NPUORG	158	US503NPUORG	159
10547120	244	10342860	32	AV125UCA	165	GS203NPUORG	161	UN203NPUPES	158	US503NPUPP	159
10547121	244	10342862	32	AV125UGMF	165	GS503NPEAQU	161	UN203NPUPP	158		
10547122	244	182082964	51	AV125UNAO	165	GS503NPENYL	161	UN203NPURC	158		
10547125	244	300110115	208	AV125UORG	165	GS503NPEORG	161	UN503NPEAQU	158		
10547126	244	989410101	18	AV125UPP	165	GS503NPUAQU	161	UN503NPENYL	158		
10547128	244	989410102	18	AV525UAQU	165	GS503NPUORG	161	UN503NPEORG	158		
10547129	244	989410103	18	AV525UNAO	165	MUPG2HCPWC1	161	UN503NPEPP	158		
10547142	244	989410104	18	AV525UORG	165	MUPG2MCPWC8	161	UN503NPERC	158		
10547147	244	989410105	18	GN203APEAQU	161	MUPG2MCWT8	161	UN503NPUAQU	158		
10547149	244	989410106	18	GN203APEORG	161	MUPMCBT8	158	UN503NPUDPP	158		
10547152	244	989410107	18	GN203NPEAQU	161	MUPMCPBC8	158	UN503NPUGMF	158		
10547153	244	989410108	18	GN203NPENYL	161	UN113ENYL	163	UN503NPUNYL	158		
10547154	244	989410109	19	GN203NPENYLSP	161	UN113EORG	163	UN503NPUORG	158		
10547155	244	989410110	19	GN203NPEORG	161	UN113UAQU	163	UN503NPUPES	158		
10547156	244	989510112	42	GN203NPEPP	161	UN113UGMF	163	UN503NPUPP	158		
10547158	247	989510116	42	GN203NPEPPSP	161	UN113UNYL	163	UN503NPURC	158		
10548081	240	989610112	42	GN203NPERC	161	UN113UORG	163	UN513UAQU	163		
10549606	241	989610116	42	GN203NPERCSP	161	UN203APEAQU	159	UN513UORG	163		
10549713	242	989610137	42	GN203NPUAQU	161	UN203APENYL	159	US203APUNYL	159		
10549867	240	989710112	42	GN203NPUGMF	161	UN203APEORG	159	US203NPEAQU	159		
10549916	240	989810112	42	GN203NPUORG	161	UN203APEPES	159	US203NPENYL	159		
13547200	244	989810116	42	GN203NPURC	161	UN203APEPP	159	US203NPEORG	159		
13547201	244	990010112	42	GN203NPURCSP	161	UN203APUAQU	159	US203NPEPES	159		
13547202	244	990010116	42	GN503NPEAQU	161	UN203APUDPP	159	US203NPEPP	159		
13547203	244	990110116	42	GN503NPENYL	161	UN203APUGMF	159	US203NPUAQU	159		
13547204	244	1820900086	52	GN503NPEORG	161	UN203APUNYL	159	US203NPUDPP	159		
13549204	244	9703900241	57	GN503NPEPP	161	UN203APUORG	159	US203NPUGMF	159		
13549205	244	18209000864	51	GN503NPERC	161	UN203APUPES	159	US203NPUNYL	159		
13549206	244	AV115NPEORG	165	GN503NPUAQU	161	UN203APUPP	159	US203NPUORG	159		
29363634	247	AV115NPUAQU	165	GN503NPUGMF	161	UN203NPEAQU	158	US203NPUPES	159		
29428668	247	AV115NPUNYL	165	GN503NPUORG	161	UN203NPENYL	158	US203NPUPP	159		
78316404	241	AV115NPUORG	165	GN503NPURC	161	UN203NPEORG	158	US503NPEAQU	159		
78336403	241	AV115UGMF	165	GS203NPEAQU	161	UN203NPEPES	158	US503NPENYL	159		
78356403	241	AV125EAQU	165	GS203NPENYL	161	UN203NPEPP	158	US503NPEORG	159		
95039860	57	AV125ENAO	165	GS203NPENYLSP	161	UN203NPERC	158	US503NPEPES	159		
97039654	57	AV125EORG	165	GS203NPEORG	161	UN203NPUAQU	158	US503NPEPP	159		
97039944	57	AV125EPP	165	GS203NPEPP	161	UN203NPUDPP	158	US503NPUAQU	159		
98949329	18	AV125NPUAQU	165	GS203NPEPPSP	161	UN203NPUGMF	158	US503NPUDPP	159		
98949552	18	AV125NPUPSU	165	GS203NPUAQU	161	UN203NPUNYL	158	US503NPUGMF	159		

Alphabetical index

	Page		
3-piece filter funnel	23		
934-AH RTU double weigh	62		
934-AH RTU for suspended and dissolved solids			
934-AH RTU for volatiles	62		
Α			
Absorption pads	245		
Acid-alkali test papers	220		
Acid treated low metal TCLP filters	54		
Air monitoring membrane, PM 2.5	91		
Air sampling filters	58		
Amber Mini-UniPrep filter vial	156		
Analytical funnels	202		
Anodisc membrane filter	76		
Anopore inorganic membranes	76		
Anotop syringe filters	136		
Antibiotic assay paper and discs	222		
Application specific filter papers	43		
Aqueous IFD and Solvent IFD	170		
AS 300 and 600 multiple vacuum filtration apparatus	202		
Ashless quantitative filter paper	20		
Autovial filter vial	164		
В			
Benchkote and Benchkote Plus surface protector	214		
Benchkote surface protector for lab-scale ÄKTA systems	216		
Binder-free glass microfiber filters	49		
Black Cyclopore membranes	200		
Black Nuclepore membranes	200		
Blood separators for lateral-flow immunoassays	232		
c			
Capsule filters	178		
Carbon cap	188		
Cell culture and chemotaxis membranes	67		

	Page		
Cellulose acetate membranes	79		
Cellulose filters	12		
Cellulosic membranes			
Cellulose nitrate membranes			
Chromatography paper	206		
Conjugate release pads for lateral-flow immunoassays	234		
Cyclopore track-etched polycarbonate membranes	67		
D			
DIONEX ASE 100/300 extraction thimble	211		
Dispensers Type SR pH indicator	219		
Dispensers Type TC pH indicator	219		
E			
eButler	116		
EPM 2000 air sampling filters	48		
Extraction thimbles	209		
Extraction thimbles for standard soxhlet apparatus	209		
F			
FF high performance nitrocellulose membranes	243		
Filter funnel, glass	98		
Filter funnel manifold for vacuum filtration	104		
Filter papers	10		
Filtration devices	96		
Folded (prepleated) filter papers	33		
Forceps PZ 001	119		
G			
GD/XP syringe filters	143		
GD/X syringe filters	139		
GF/C RTU filter grades	60		
General purpose filter papers	30		
Glass microfiber filters	48		
Glass microfiber filter without binder	48		
Glass microfiber filter with binder	48		

	Page		
Glass microfiber filter with inorganic binder	55		
Glass microfiber filter with organic binder			
Glass microfiber accessories			
Glass microfiber GF series			
Glass microfiber thimbles			
GMF 150 multigrade membrane prefilter	48		
н			
Hardened ashless quantitative filter paper	25		
Hardened low ash filter paper	23		
HEPA-VENT and HEPA-CAP	191		
High-performance cellulose extraction thimbles	209		
HPLC certified syringe filters	153		
I			
Immunopore membranes	236		
Indicator books	219		
Indicator papers	219		
Inline filters	170		
К			
Kjeldahl weighing boats	217		
L			
Lens cleaning tissue	224		
Μ			
MBS I microbiological filtration system	201		
MBS I accessories	119		
Membraclear membrane	86		
Membrane accessories	202		
Membrane-Butler	85		
Membrane filters	67		
Membrane filtration accessories	202		
Membranes for lateral-flow immunoassays	236		
Membrane prefilters and separators			
Microbiology			

	Page
MicroPlus and ME membranes	198
Mini-UniPrep filter vials	155
Mini-UniPrep G2 Glass filter vials	160
Mixed cellulose ester membranes	85
Moisture test paper	224
Ν	
Nitrocellulose membranes	248
Nuclepore polycarbonate track-etched membranes	71
Nylon membranes	93
P	
Papers for healthcare	222
Parchment weighing paper	217
Phase separator paper	223
pH indicator and test papers	219
Polyamide membranes	94
Polycap capsule filters	178
 Polycarbonate track-etched membranes	200
Polydisc inline filters	172
Polyester drain discs	115
 PolyVENT venting filters	189
Pop-Top and Swin-Lok plastic filter holders	110
 Pressure filtration devices	112
PTFE membranes	89
Puradisc syringe filters	129
Q	
Quadrant folded filter papers	223
Qualitative filter papers	13
Quantitative filter papers	20
Quantitative filter papers—hardened low ash grades	23
Quantitative filter papers—hardened ashless grades	25
Quantitative filter papers—ashless grades	20
Quantitative filter papers—ashless folded grades	39

Page R Ready-to-use filter grades 33 78 Regenerated cellulose membranes 173 ReZist syringe filters Roby 25 automation filters 147 Roby 25 filter validation kit 148 s 230 Sample pads for lateral-flow immunoassays Seed testing papers 46 30 Shark Skin Six-position compressor accessory—Mini-UniPrep 156 Slit septa Mini-UniPrep filter vial 156 Soil analysis filter papers 44 153 SPARTAN—HPLC certified syringe filters Specialized test papers 220 204 Specialty products Standard cellulose extraction thimbles 209 Standard glass fiber extraction thimbles 209 Strips Type CF pH indicator 219 219 Strips Type CS pH indicator Suction Flask 103 Sugar/food industry filter papers 27 Surface wipes, smear tab 25 128 Syringe filters Syringe type holders S/S 108 Т 219 Test papers Track-etched polycarbonate membranes 67 Track-etched membranes for diagnostic applications 251 U UniFlo syringe filters 166 UniPrep filter vials 164 Universal indicator papers 220

V VACU-GUARD 193 VACU-GUARD 150 193 Vacuum filtration equipment 203 203 Vacuum manifolds Vacuum and pressure pumps 203 193 Vacuum protection filters Vacuum type glass holders 100 Venting filters 189 w 217 Weighing papers Wet strengthened qualitative filter papers 27 Whatman GD/X syringe filters 139 Whatman GD/XP syringe filters 143 Witt's bottle WT 100 203

Page

Easy ways to buy

We are where you are

For local office contact information, visit cytiva.com/contact

- 1. Shop online at cytiva.com/shop/whatman-laboratory-filtration.
- 2. eMail your customer service team.
- 3. Call us now. Our customer service representatives will answer your questions and help you find the right filtration product to meet your needs.
- 4. Find a distributor. Details of your nearest distributor can be found at **cytiva.com/support/find-a-distributor**.

Notes

Filter selection made easy

Use our online Whatman filter selector to find the right filter for your sample and application.

cytiva.com/whatmanfilterselector

cytiva.com/whatman

Cytiva and the Drop logo are trademarks of Global Life Sciences IP Holdco LLC or an affiliate.

934-AH, ÄKTA, Anodisc, Anopore, Anotop, Autovial, Benchkote, Cyclopore, GF/C, Immunopore, Mini-UniPrep, Nuclepore, ReZist, Shark Skin, SPARTAN, Uniflo, UniPrep, Whatman, and Whatman GD/X are trademarks of Global Life Sciences Solutions USA LLC or an affiliate doing business as Cytiva.

903 is a trademark of Eastern Business Forms. DIONEX is a trademark of Dionex Corporation. Excel is a trademark of Microsoft Corporation. Soxtec is a trademark of Foss Analytical AB. All other third party trademarks are the property of their respective owner.

© 2020 Cytiva

All goods and services are sold subject to the terms and conditions of sale of the supplying company operating within the Cytiva business. A copy of those terms and conditions is available on request. Contact your local Cytiva representative for the most current information.

For local office contact information, visit cytiva.com/contact

CY1871-DDMmm20-HB

Whatman laboratory filtration. The name says quality and innovation. The products bring efficiency and deliver reliable results for research labs, quality control and field applications.

in **Australia** please contact: Bio-Strategy Pty Ltd. T: 1800 008 453 | E: sales.au@bio-strategy.com www.bio-strategy.com | shop.bio-strategy.com